Six steroid conjugates of bile acids and sterol derivatives have been synthesized using the click chemistry method. The azide-alkyne Huisgen cycloaddition of the propionyl ester of lithocholic, deoxycholic and cholic acid with azide derivatives of cholesterol and cholestanol gave new bile acid-sterol conjugates linked with a 1,2,3-triazole ring. Previously, sterols were converted to bromoacetate substituted derivatives by reaction with bromoacetic acid bromide in anhydrous dichloromethane. These compounds were then converted to azide derivatives using sodium azide. The propiolic esters of lithocholic, deoxycholic and cholic acids were obtained by reaction with propiolic acid in the presence of p-toluenesulfonic acid. Additionally, two of these steroids: methyl 3α-propynoyloxy-12α-acetoxy-5β-cholane-24-oate and methyl 3α-propynoyloxy-7 α,12α-diacetoxy-5β-cholane-24-oate were also obtained and characterized for the first time. All conjugates were obtained in good yields using an efficient synthesis method. The structures of all conjugates and the four substrates were confirmed by spectral (H- and C NMR, FT-IR) analysis, mass spectrometry (ESI-MS), and PM5 semiempirical methods. The pharmacotherapeutic potential of the synthesized compounds was estimated based on the in silico Prediction of Activity Spectra for Substances (PASS) method. The cytotoxicity of the compounds was in vitro evaluated in a hemolytic assay using human erythrocytes as a cell model. The in silico and in vitro study results indicate that the selected compound possesses an interesting biological activity and can be considered as potential drug design agent. Additionally, molecular docking was performed for the selected conjugate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.steroids.2023.109282 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
The use of proteins as intracellular probes and therapeutic tools is often limited by poor intracellular delivery. One approach to enabling intracellular protein delivery is to transform proteins into spherical nucleic acid (proSNA) nanoconstructs, with surfaces chemically modified with a dense shell of radially oriented DNA that can engage with cell-surface receptors that facilitate endocytosis. However, proteins often have a limited number of available reactive surface residues for DNA conjugation such that the extent of DNA loading and cellular uptake is restricted.
View Article and Find Full Text PDFMany protein bioconjugation strategies focus on the modification of lysine residues owing to the nucleophilicity of their amine side-chain, the generally high abundance of lysine residues on a protein's surface and the ability to form robustly stable amide-based bioconjugates. However, the plethora of solvent accessible lysine residues, which often have similar reactivity, is a key inherent issue when searching for regioselectivity and/or controlled loading of an entity. A relevant example is the modification of antibodies and/or antibody fragments, whose conjugates offer potential for a wide variety of applications.
View Article and Find Full Text PDFBiol Res
January 2025
School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt. Electronic address:
Indoprofen (INP) comprises two enantiomers, R- and S-, whose high pharmacological efficacy is realized only in the case of the separated enantiomers. A newly synthesized poly(acrylonitrile-co-divinylbenzene) (PANB)-based sorbent with selective affinity to the S-enantiomer of INP was applied to separate INP racemate. The synthesis was performed by suspension polymerization with low-crosslinked PANB microparticles and by reaction of the inserted nitriles with 1-amino-1H-pyrrole-2,5‑dione (Ma-NH).
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, University of California, Davis, California 95616, United States.
Protein-protein interactions in the cell membrane are typically mediated by glycans, with terminal sialic acid often involved in these interactions. To probe the nature of the interactions, we developed quantitative cross-linking methods involving the glycans of the glycoproteins and the polypeptide moieties of proteins. We designed and synthesized biotinylated enrichable cross-linkers that were click-tagged to metabolically incorporate azido-sialic acid on cell surface glycans to allow cross-linking of the azido-glycans with lysine residues on proximal polypeptides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!