In industrialized societies, the prevalence of metabolic diseases has substantially increased over the past few decades, yet the underlying causes remain unclear. Cadmium (Cd) is a hazardous heavy metal and pervasive environmental endocrine disruptor. Here, we investigate the effects of paternal Cd exposure on offspring glucolipid metabolism. Paternal Cd exposure (1 mg kg body weight) impaired glucose tolerance, increased random serum glucose and fasting serum insulin, elevated serum total cholesterol, and low-density lipoprotein in offspring mice. Untargeted metabolomics analysis of male offspring liver tissue revealed that paternal Cd exposure can affect offspring glucolipid metabolic reprogramming, which involved biosynthesis of phenylalanine, tyrosine and tryptophan, biosynthesis of unsaturated fatty acids, metabolism of linoleic acid, arachidonic acid and α-linolenic acid. Transcriptome sequencing of male offspring liver tissue showed that arachidonic acid metabolism, AMPK signaling pathway, PPAR signaling pathway and adipocytokine signaling pathway were significantly inhibited in the Cd-exposed group. The mRNA expression levels of PPAR signaling pathway related genes (Acsl1, Cyp4a14, Cyp4a10, Cd36, Ppard and Pck1) were significantly decreased. The protein expression levels of ACSL1, CD36, PPARD and PCK1 were also significantly reduced. Collectively, our findings suggest that paternal Cd exposure affect offspring glucolipid metabolic reprogramming via PPAR signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.139592DOI Listing

Publication Analysis

Top Keywords

signaling pathway
24
ppar signaling
16
paternal exposure
16
glucolipid metabolic
12
metabolic reprogramming
12
offspring glucolipid
12
offspring mice
8
male offspring
8
offspring liver
8
liver tissue
8

Similar Publications

Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited.

View Article and Find Full Text PDF

IL-6 Promotes Muscle Atrophy by Increasing Ubiquitin-Proteasome Degradation of Muscle Regeneration Factors After Cerebral Infarction in Rats.

Neuromolecular Med

January 2025

Department of Rehabilitation Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 168 Gushan Road, Dongshan Street, Jiangning District, Nanjing, 211199, Jiangsu, China.

Muscle atrophy in pathological or diseased muscles arises from an imbalance between protein synthesis and degradation. Elevated levels of interleukin-6 (IL-6) are a hallmark of ischemic stroke and have been associated with muscle atrophy in certain pathological contexts. However, the mechanisms by which IL-6 induces muscle atrophy in the context of stroke remain unclear.

View Article and Find Full Text PDF

Ovarian cancer is a common malignant tumor in women, exhibiting a certain sensitivity to chemotherapy drugs like gemcitabine (GEM). This study, through the analysis of ovarian cancer single-cell RNA sequencing (scRNA-seq) data and transcriptome data post-GEM treatment, identifies the pivotal role of hypoxia-inducible factor 1 alpha (HIF-1α) in regulating the treatment process. The results reveal that HIF-1α modulates the expression of VEGF-B, thereby inhibiting the fibroblast growth factor 2 (FGF2)/FGFR1 signaling pathway and impacting tumor formation.

View Article and Find Full Text PDF

Background: AT-rich interaction domain 4B (ARID4B) is a transcriptional activator that regulates the phosphatidylinositol 3-kinase (PI3K)/AKT pathway in prostate cancer. However, the role of ARID4B in hepatocellular carcinoma (HCC) has remained unclear.

Methods: This study included 162 patients who had undergone primary hepatic resection for HCC between 2008 and 2019.

View Article and Find Full Text PDF

Objective: Post-resuscitation brain injury is a common sequela after cardiac arrest (CA). Increasing sirtuin1 (SIRT1) has been involved in neuroprotection in oxygen-glucose deprivation (OGD) neurons, and we investigated its mechanism in post-cardiopulmonary resuscitation (CPR) rat brain injury by mediating p65 deacetylation modification to mediate hippocampal neuronal ferroptosis.

Methods: Sprague-Dawley rat CA/CPR model was established and treated with Ad-SIRT1 and Ad-GFP adenovirus vectors, or Erastin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!