S-adenosylmethionine (SAM), which is synthesized from methionine and ATP catalyzed by S-adenosylmethionine synthetase (SAMS), is an important methyl donor in plants. SAMS and DNA methylation play an important role in the plant response to abiotic stresses. Previous studies have shown that SAMS improves salt tolerance in tomato plants, but it is not clear whether the DNA methylation pathway mediates SAMS-induced salt tolerance. This study confirmed that SlSAMS1-overexpressing plants exhibited improved salt tolerance. Through whole-genome bisulfite sequencing (WGBS) and transcriptome sequencing (RNA-seq) analysis, the study screened the circadian rhythm pathway and identified the gene SlGI in this pathway, which was regulated by SlSAMS1. The gene body region of SlGI, the core gene of the circadian rhythm pathway, was hypermethylated in SlSAMS1-overexpressing plants, and its expression level was significantly increased. Furthermore, the SlGI-overexpressing plants showed higher salt tolerance, less reduction in plant height and fresh weight, lower electrolyte leakage, malondialdehyde and HO content, and higher antioxidant enzyme activity compared to wild type plants. Therefore, SlSAMS1-overexpressing plants regulated significant changes in CHG-type methylation sites of the SlGI gene body and its expression levels, leading to an enhanced salt tolerance of tomato plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2023.111808DOI Listing

Publication Analysis

Top Keywords

salt tolerance
24
dna methylation
12
slsams1-overexpressing plants
12
plants
8
tolerance tomato
8
tomato plants
8
circadian rhythm
8
rhythm pathway
8
gene body
8
salt
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!