Biochar amendment for reducing the environmental impacts of reclaimed polluted sediments.

J Environ Manage

Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy.

Published: October 2023

Dredging activities produce large amounts of polluted sediments that require adequate management strategies. Sediment reuse and relocation can involve several environmental issues, such as the release of CO and nitrogen compounds in the environment, the transfer of metals to plant tissues and the persistence of phytotoxic compounds. In this framework, the aim of the present work is to evaluate the use of biochar at different doses, in combination with plant growth, to reduce the environmental impacts polluted dredged sediments. Irrespective to the plant treatment, the amendment of the sediment with the lowest dose of biochar (3%) reduced by 25% the CO emissions of the substrate, by 89% the substrate carbon loss and by 35% the amount of nitrogen released into the environment (average values of the three plant treatments). The negative priming effect of biochar on organic matter mineralization can be responsible for the beneficial reduction of carbon and nitrogen release in the environment. The lack of similar effects observed at the higher biochar doses can depend on the low albedo of the biochar particles, causing the substrate warming (+1 °C for highest biochar dose) and accelerating the organic matter mineralization. Finally, shrub growth in combination with 3% biochar was able to offset the CO emission of the sediment and to reduce the amount of nitrogen lost. This work provides new insight on the potential benefit related to the biochar amendment of organic matter-rich dredged sediments, suggesting that the use of moderate dose of wood biochar in combination with shrub plantation can reduce the release of CO and nitrogen compounds in the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.118623DOI Listing

Publication Analysis

Top Keywords

biochar
10
biochar amendment
8
environmental impacts
8
polluted sediments
8
release nitrogen
8
nitrogen compounds
8
compounds environment
8
biochar doses
8
dredged sediments
8
amount nitrogen
8

Similar Publications

An experiment was conducted for 60 days in a 500L capacity FRP tank containing inland ground saline water (fortified to a level of 50% potassium) with one control (sediment) and three treatments; T1(Paddy Straw Biochar (PSB) in sediment), T2 (Banana Peduncle Biochar (BPB) in sediment), and T3 (PSB + BPB in sediment). Biochar (100 g) was amended with sediment (25 kg) at 9 tons/ha. Shrimps of average weight 5 ± 0.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is a major cause of death worldwide, with 1.27 M direct deaths from bacterial drug-resistant infections as of 2019. Dissemination of multidrug-resistant (MDR) bacteria in the environment, in conjunction with pharmapollution by active pharmaceutical ingredients (APIs), create and foster an environmental reservoir of AMR.

View Article and Find Full Text PDF

Soil aggregation alterations under soil microplastic and biochar addition and aging process.

Environ Pollut

January 2025

School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, 430072, China.

Soil microplastics (MPs) are a substantial threat to soil health, particularly by disrupting soil aggregation. Additionally, MPs undergo aging processes in the soil, which may significantly alter their long-term impacts on soil structure. To investigate these effects, we conducted an eight-month soil incubation experiment, examining the influence of MPs and their aging on soil aggregation.

View Article and Find Full Text PDF

Improving the quality of degraded coastal saline-alkali soil and promoting plant growth are key challenges in the restoration of ecological functions in coastal regions. Organic ameliorants such as effective microbial (EM) agent, biochar, and organic compost have been proposed as sustainable solutions, but limited research has explored the combined effects of these amendments. This study investigates five organic improvement strategies: individual applications of EM, corn straw biochar (CSB), and sewage sludge-reed straw compost (COM), along with combined treatments of CSB + EM and COM + EM, on Sesbania growth in a pot experiment.

View Article and Find Full Text PDF

Combination of anaerobic digestion and sludge biochar for bioenergy conversion: Estimation and evaluation of energy production, CO emission, and cost analysis.

J Environ Manage

January 2025

Bioenergy Research Institute - IPBEN, UNESP, Institute of Chemistry, Araraquara, SP, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Campus Araraquara, Department of Engineering, Physics and Mathematics, Rua Prof. Francisco Degni, 55, 14800-900, Araraquara, SP, Brazil. Electronic address:

Waste-to-energy technologies involve the conversion of several wastes to useful energy forms like biogas and biochar, which include biological and thermochemical processes, as well as the combination of both systems. Assessing the economic and environmental impacts is an important step to integrate sustainability and economic viability at anaerobic digestion systems and its waste management. Energy production, CO emissions, cost analysis, and an overall process evaluation were conducted, relying on findings from both laboratory and pilot-scale experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!