Coastal wetlands are recognized as carbon sinks that play an important role in mitigating global climate change because of the strong carbon uptake by vegetation and high carbon sequestration in the soil. Over the last few decades, plastic waste pollution in coastal zones has become increasingly serious owing to high-intensity anthropogenic activities. However, the influence of plastic waste (including foam waste) accumulation in coastal wetlands on carbon flux remains unclear. In the Yangtze Estuary, we investigated the variabilities of vegetation growth, carbon dioxide (CO) and methane (CH) fluxes, and soil properties in a clean Phragmites australis marsh and mudflat and a plastic-polluted marsh during summer and autumn. The clean marsh showed a strong CO uptake capacity (a carbon sink), and the clean mudflat showed a weak CO sink during the measurement period. However, polluted marshes are a significant source of CO emissions. Regardless of the season, the gross primary production and vegetation biomass of the polluted marshes were on average 9.5 and 1.1 times lower than those in the clean marshes, respectively. Ecosystem respiration and CH emissions in polluted marshes were significantly higher than those in clean marshes and mudflats. Generally, the soil bulk density and salinity in polluted marshes were lower, whereas the median particle size was higher at the polluted sites than at the clean sites. Increased soil porosity and decreased salinity may favor CO and CH emissions through gas diffusion pathways and microbiological behavior. Moreover, the concentrations of heavy metals in the soil of plastic-polluted marshes were 1.24-1.49 times higher than those in the clean marshes, which probably limited vegetation growth and CO uptake. Our study highlights the adverse effects of plastic pollution on the carbon sink functions of coastal ecosystems, which should receive global attention in coastal environmental management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.118654 | DOI Listing |
Natl Sci Rev
January 2025
Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX 77710, USA.
Wetlands in the Qinghai-Tibet Plateau are a unique and fragile ecosystem undergoing rapid changes. We show two unique patterns of mercury (Hg) accumulation in wetland sediments. One is the 'surface peak' in monsoon-controlled regions and the other is the 'subsurface peak' in westerly-controlled regions.
View Article and Find Full Text PDFPLoS One
January 2025
Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America.
Coastal wetlands, including freshwater systems near large lakes, rapidly bury carbon, but less is known about how they transport carbon either to marine and lake environments or to the atmosphere as greenhouse gases (GHGs) such as carbon dioxide and methane. This study examines how GHG production and organic matter (OM) mobility in coastal wetland soils vary with the availability of oxygen and other terminal electron acceptors. We also evaluated how OM and redox-sensitive species varied across different size fractions: particulates (0.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Environmental Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia.
Textile wastewater poses significant risks if discharged untreated, especially due to the presence of synthetic dyes, salts, and heavy metals. As a result, constructed wetlands have emerged as a promising solution for sustainable textile wastewater management. In this context, this study evaluates a micro-scale vertical subsurface flow constructed wetland (VSSFCW) for treating textile wastewater.
View Article and Find Full Text PDFEnviron Res
January 2025
Jiangsu Water Conservancy Construction Engineering Co., Ltd, Yangzhou, PR China.
Biochar is one of the ways for carbon storage, pollution control and biosolid reuse. Aquatic plant reeds are widely used in nutrient removal in wetlands and have huge biomass. Nonetheless, little is known regarding the effects of reed-based biochar on sediments.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Biology, University of Southern Denmark, Odense, Denmark.
The concept of "blue carbon" is, in this study, critically evaluated with respect to its definitions, measuring approaches, and time scales. Blue carbon deposited in ocean sediments can only counteract anthropogenic greenhouse gas (GHG) emissions if stored on a long-term basis. The focus here is on the coastal blue carbon ecosystems (BCEs), mangrove forests, saltmarshes, and seagrass meadows due to their high primary production and large carbon stocks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!