Background: The motor symptoms affecting upper and lower extremity functioning in people with multiple sclerosis (PwMS) are considered the cardinal symptoms of multiple sclerosis. There is still a need for outcome measures that can sensitively evaluate these symptoms. We aimed to investigate the sensitivity of the isometric outcomes (maximum force; Fmax, maximum rate of force development; RFDmax, rate of force development scaling factor; RFD-SF, and rate of force relaxation scaling factor; RFR-SF) and standard clinical tests (9-hole peg test; 9HPT and timed 25-feet walk test; T25FW) in detecting the upper and lower extremity motor deficiencies in PwMS and also in a subgroup of mildly affected PwMS whose performance in standard clinical tests were similar to controls.
Methods: Twenty-nine PwMS (age: 47.9 (8.6) years, relapsing-remitting type, expanded disability status scale: 2.5 (1.5)) and their age- and gender-matched controls completed an identical testing protocol in the upper (grip force muscles) and lower (knee extensors) extremities. For each extremity, we assessed Fmax, RFDmax, RFD-SF, and RFR-SF. Additionally, participants completed standard clinical tests for the evaluation of upper- (9HPT) and lower-extremity (T25FW) function. Comparisons were made between controls and PwMS 1) using all study participants and 2) including only mildly affected PwMS whose performance in standard functional tests was comparable to controls. Independent sample t-tests were utilized to compare groups, with a p-value set at 0.01 to correct for multiple comparisons. P-values and effect sizes were used to evaluate the sensitivity of the outcome measures in detecting group differences.
Results: Our results indicate that most isometric outcomes and standard functional tests were sensitive in detecting motor deficiencies in both upper and lower extremities between groups (p<0.001). Among participants, 16 PwMS in 9HPT and 11 PwMS in T25FW demonstrated performance similar to that of the control group (9HPT: 18.85 (2.20) s vs 17.81 (2.19) s; p=0.19) and (T25FW: 3.60 (0.42) s vs 3.58 (0.29) s; p=0.92). The results of the comparisons between mildly affected PwMS and their controls indicate that RFR-SF is the only sensitive isometric outcome to detect differences between groups in the upper (-8.24 (0.76) 1/s vs -8.93 (0.6) 1/s; p=0.008) and lower extremity (-5.86 (1.13) 1/s vs -7.71 (1.11) 1/s; p<0.001).
Conclusion: The rate of force relaxation scaling factor, which assesses the ability to rapidly relax muscle forces after quick contractions, demonstrates high sensitivity in detecting motor deficiencies in PwMS, even when the current standard clinical outcomes fail to detect these differences. Our findings emphasize the importance of future randomized controlled trials focusing on rehabilitative and therapeutic interventions that specifically target muscle force relaxation to enhance motor functioning in PwMS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msard.2023.104897 | DOI Listing |
Clin Rheumatol
January 2025
Rheumatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
Objective: The objective of this study is to present the clinical characteristics of immunoglobulin G4-related diseases (IgG4-RD) patients and describe associated overlap with autoimmune rheumatic diseases (ARDs).
Patients And Methods: This cross-sectional study included 81 patients with IgG4-RD who were recruited from 13 specialized rheumatology departments and centers across the country in collaboration with the Egyptian College of Rheumatology (ECR). Patients underwent a thorough history-taking and clinical examination.
J Med Syst
January 2025
Department of Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands.
This study aimed to develop and validate a cost-effective, customizable patient-specific phantom for simulating external ventricular drain placement, combining image segmentation, 3-D printing and molding techniques. Two variations of the phantom were created based on patient MRI data, integrating a realistic skin layer with anatomical landmarks, a 3-D printed skull, an agarose polysaccharide gel brain, and a ventricular cavity. To validate the phantom, 15 neurosurgeons, residents, and physician assistants performed 30 EVD placements.
View Article and Find Full Text PDFNat Sci Sleep
December 2024
Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA.
Background: Poor sleep is associated with longer recovery following adolescent concussion, making the longitudinal assessment of sleep important for monitoring recovery and identifying sleep disruptions. An important consideration for successful monitoring of sleep following concussion is the feasibility and adherence of a given sleep monitoring tool when used in an at-home environment. Understanding the usability of different sleep monitoring tools is essential for determining their applicability for longitudinal assessment in an ecologically valid environment.
View Article and Find Full Text PDFJ Pathol
January 2025
Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, PR China.
Intestinal stem cells (ISCs) and Paneth cells (PCs) reside at the bottom of the crypts of Lieberkühn in the small intestine. Recent studies have shown that the transcription factor Mist1, also named BHLHA15, plays an important role in the maturation of PCs. Since there is an intimate interaction between PCs and ISCs, we speculated that the loss of Mist1 could impact these two neighboring cell types.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China.
The increasing demand for mobile artificial intelligence applications has elevated edge computing to a prominent research area. Silicon materials, renowned for their excellent electrical properties, are extensively utilized in traditional electronic devices. However, the development of silicon materials for flexible neuromorphic computing devices encounters great challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!