RNA modifications and editing changes constitute 'epitranscriptome' and are crucial in regulating the development and stress response in plants. Exploration of the epitranscriptome and associated machinery would facilitate the engineering of stress tolerance in crops. RNA editing and modifications post-transcriptionally decorate almost all classes of cellular RNAs, including tRNAs, rRNAs, snRNAs, lncRNAs and mRNAs, with more than 170 known modifications, among which mA, Ψ, mC, 8-OHG and C-to-U editing are the most abundant. Together, these modifications constitute the "epitranscriptome", and contribute to changes in several RNA attributes, thus providing an additional structural and functional diversification to the "cellular messages" and adding another layer of gene regulation in organisms, including plants. Numerous evidences suggest that RNA modifications have a widespread impact on plant development as well as in regulating the response of plants to abiotic and biotic stresses. High-throughput sequencing studies demonstrate that the landscapes of mA, mC, Am, Cm, C-to-U, U-to-G, and A-to-I editing are remarkably dynamic during stress conditions in plants. GO analysis of transcripts enriched in Ψ, mA and mC modifications have identified bonafide components of stress regulatory pathways. Furthermore, significant alterations in the expression pattern of genes encoding writers, readers, and erasers of certain modifications have been documented when plants are grown in challenging environments. Notably, manipulating the expression levels of a few components of RNA editing machinery markedly influenced the stress tolerance in plants. We provide updated information on the current understanding on the contribution of RNA modifications in shaping the stress responses in plants. Unraveling of the epitranscriptome has opened new avenues for designing crops with enhanced productivity and stress resilience in view of global climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-023-03046-1DOI Listing

Publication Analysis

Top Keywords

rna modifications
12
stress
8
shaping stress
8
stress responses
8
plants
8
responses plants
8
modifications
8
response plants
8
stress tolerance
8
rna editing
8

Similar Publications

Using Zebrafish Models to Study Epitranscriptomic Regulation of CNS Functions.

J Neurochem

January 2025

Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.

Epitranscriptomic regulation of cell functions involves multiple post-transcriptional chemical modifications of coding and non-coding RNA that are increasingly recognized in studying human brain disorders. Although rodent models are presently widely used in neuroepitranscriptomic research, the zebrafish (Danio rerio) has emerged as a useful and promising alternative model species. Mounting evidence supports the importance of RNA modifications in zebrafish CNS function, providing additional insights into epitranscriptomic mechanisms underlying a wide range of brain disorders.

View Article and Find Full Text PDF

Background: As a member of the tumor necrosis factor (TNF) superfamily, tumor necrosis factor superfamily member 4 (TNFSF4) is expressed on antigen-presenting cells and activated T cells by binding to its receptor TNFRSF4. However, tumorigenicity of TNFSF4 has not been studied in pan-cancer. Therefore, comprehensive bioinformatics analysis of pan-cancer was performed to determine the mechanisms through which TNFSF4 regulates tumorigenesis.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) have garnered substantial attention due to their distinctive circular structure and gene regulatory functions, establishing them as a significant class of functional non-coding RNAs in eukaryotes. Studies have demonstrated that circRNAs can interact with RNA-binding proteins (RBPs), which play crucial roles in tumorigenesis, metastasis, and drug response in cancer by influencing gene expression and altering the processes of tumor initiation and progression. This review aims to summarize the recent advances in research on circRNA-protein interactions (CPIs) and discuss the functions and mode of action of CPIs at various stages of gene expression, including transcription, splicing, translation, and post-translational modifications in the context of cancer.

View Article and Find Full Text PDF

Decoding the mA epitranscriptomic landscape for biotechnological applications using a direct RNA sequencing approach.

Nat Commun

January 2025

National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Epitranscriptomic modifications, particularly N6-methyladenosine (mA), are crucial regulators of gene expression, influencing processes such as RNA stability, splicing, and translation. Traditional computational methods for detecting mA from Nanopore direct RNA sequencing (DRS) data are constrained by their reliance on experimentally validated labels, often resulting in the underestimation of modification sites. Here, we introduce pum6a, an innovative attention-based framework that integrates positive and unlabeled multi-instance learning (MIL) to address the challenges of incomplete labeling and missing read-level annotations.

View Article and Find Full Text PDF

Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels are crucial for detecting and transmitting nociceptive stimuli. Inflammatory pain is associated with sustained increases in TRPA1 and TRPV1 expression in primary sensory neurons. However, the epigenetic mechanisms driving this upregulation remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!