Ocean acidification, caused by anthropogenic CO emissions, is predicted to have major consequences for reef-building corals, jeopardizing the scaffolding of the most biodiverse marine habitats. However, whether corals can adapt to ocean acidification and how remains unclear. We addressed these questions by re-examining transcriptome and genome data of Acropora millepora coral holobionts from volcanic CO seeps with end-of-century pH levels. We show that adaptation to ocean acidification is a wholistic process involving the three main compartments of the coral holobiont. We identified 441 coral host candidate adaptive genes involved in calcification, response to acidification, and symbiosis; population genetic differentiation in dinoflagellate photosymbionts; and consistent transcriptional microbiome activity despite microbial community shifts. Coral holobionts from natural analogues to future ocean conditions harbor beneficial genetic variants with far-reaching rapid adaptation potential. In the face of climate change, these populations require immediate conservation strategies as they could become key to coral reef survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363134 | PMC |
http://dx.doi.org/10.1038/s42003-023-05103-7 | DOI Listing |
Foods
December 2024
National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
High dietary fat food such as mayonnaise (70-80% oil content) can induce obesity and cardiovascular diseases, thus reducing their oil content is required. However, the development of low-fat mayonnaise is still a big challenge since reducing oil content will increase the fluidity, induce phase separation and decrease the stability of mayonnaise. Herein, we provide a novel strategy for developing yolk-casein-based low-fat mayonnaise (30% oil content) with a similar texture to commercial high-fat mayonnaise through post-acidification.
View Article and Find Full Text PDFMar Environ Res
December 2024
School of Oceanography, University of Washington, 1492 NE Boat St., Seattle, WA, 98105, USA; Applied Physics Laboratory, University of Washington, Box 355640, Seattle, WA, 98105, USA.
Comprehensive understanding of environmental multiple stressors on calcification in marine calcifiers remains an important topic of study, especially under ocean global change associated with multiple stressors. We explore the impact of multiple stressor on pteropod calcification in the southern Salish Sea (Washington, U.S.
View Article and Find Full Text PDFiScience
December 2024
NSW Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia.
Global oceans are warming and acidifying because of increasing greenhouse gas emissions that are anticipated to have cascading impacts on marine ecosystems and organisms, especially those essential for biodiversity and food security. Despite this concern, there remains some skepticism about the reproducibility and reliability of research done to predict future climate change impacts on marine organisms. Here, we present meta-analyses of over two decades of research on the climate change impacts on an ecologically and economically valuable Sydney rock oyster, .
View Article and Find Full Text PDFiScience
August 2024
Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China.
A major obstacle to exploiting industrial flue gas for microalgae cultivation is the unfavorable acidic environment. We previously identified three upregulated genes in the low-pH-adapted model diatom : ferredoxin (PtFDX), cation/proton antiporter (PtCPA), and HCO transporter (PtSCL4-2). Here, we individually overexpressed these genes in to investigate their respective roles in resisting acidic stress (pH 5.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.
Ocean acidification (OA) and global warming (GW) drive a variety of responses in seagrasses that may modify their carbon metabolism, including the dissolved organic carbon (DOC) fluxes and the organic carbon stocks in upper sediments. In a 45-day full-factorial mesocosm experiment simulating forecasted CO and temperature increase in a Cymodocea nodosa community, we found that net community production (NCP) was higher under OA conditions, particularly when combined with warming (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!