Mesenchymal stem cells, as glioma exosomal immunosuppressive signal multipliers, enhance MDSCs immunosuppressive activity through the miR-21/SP1/DNMT1 positive feedback loop.

J Nanobiotechnology

Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, Shandong, 250012, China.

Published: July 2023

AI Article Synopsis

  • The immunosuppressive microenvironment created by glioma involves glioma-associated mesenchymal stem cells (GA-MSCs), which are linked to therapy resistance and poor patient outcomes.
  • GA-MSCs enhance the expression of CD73 in myeloid-derived suppressor cells (MDSCs) through exosomal miR-21 signaling, strengthening the immunosuppressive environment more effectively than glioma exosomes alone.
  • Targeting GA-MSCs with modified dendritic cell-derived exosomes that carry miR-21 inhibitors can reduce CD73 levels on MDSCs and enhance the effectiveness of anti-PD-1 therapy.

Article Abstract

Background: The immunosuppressive microenvironment in glioma induces immunotherapy resistance and is associated with poor prognosis. Glioma-associated mesenchymal stem cells (GA-MSCs) play an important role in the formation of the immunosuppressive microenvironment, but the mechanism is still not clear.

Results: We found that GA-MSCs promoted the expression of CD73, an ectonucleotidase that drives immunosuppressive microenvironment maintenance by generating adenosine, on myeloid-derived suppressor cells (MDSCs) through immunosuppressive exosomal miR-21 signaling. This process was similar to the immunosuppressive signaling mediated by glioma exosomal miR-21 but more intense. Further study showed that the miR-21/SP1/DNMT1 positive feedback loop in MSCs triggered by glioma exosomal CD44 upregulated MSC exosomal miR-21 expression, amplifying the glioma exosomal immunosuppressive signal. Modified dendritic cell-derived exosomes (Dex) carrying miR-21 inhibitors could target GA-MSCs and reduce CD73 expression on MDSCs, synergizing with anti-PD-1 monoclonal antibody (mAb).

Conclusions: Overall, this work reveals the critical role of MSCs in the glioma microenvironment as signal multipliers to enhance immunosuppressive signaling of glioma exosomes, and disrupting the positive feedback loop in MSCs with modified Dex could improve PD-1 blockade therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362641PMC
http://dx.doi.org/10.1186/s12951-023-01997-xDOI Listing

Publication Analysis

Top Keywords

glioma exosomal
16
positive feedback
12
feedback loop
12
immunosuppressive microenvironment
12
exosomal mir-21
12
immunosuppressive
9
mesenchymal stem
8
stem cells
8
exosomal immunosuppressive
8
immunosuppressive signal
8

Similar Publications

Glioma is the most common primary intracranial malignant tumor in adults, with a poor prognosis. Exosomes released by tumor cells play a crucial role in tumor development, metastasis, angiogenesis, and other biological processes. Despite this significance, the precise molecular mechanisms governing exosome secretion and their impact on tumor progression remain incompletely understood.

View Article and Find Full Text PDF

Background: Small extracellular vesicles (sEV) released by tumor cells (tumor-derived sEV; TEX) mediate intercellular communication between tumor and non-malignant cells and were shown to impact disease progression. This study investigates the relationship between the expression levels of the vesiculation-related genes linked to sEV production and the tumor microenvironment (TME).

Methods: Two independent gene sets were analyzed, both previously linked to sEV production in various non-malignant or malignant cells.

View Article and Find Full Text PDF

Modern insights of nanotheranostics in the glioblastoma: An updated review.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea. Electronic address:

Glioblastoma multiforme (GBM) is a highly malignant subtype of glioma, originating from the glial cells that provide support to other neurons in the brain. GBM predominantly impacts the cerebral hemisphere of the brain, with minimal effects on the cerebellum, brain stem, or spinal cord. Individuals diagnosed with GBM commonly encounter a range of symptoms, starting from auditory abnormalities to seizures.

View Article and Find Full Text PDF

Exosomes, minute vesicles originating from diverse cell types, exhibit considerable potential as carriers for drug delivery in glioma therapy. These naturally occurring nanocarriers facilitate the transfer of proteins, RNAs, and lipids between cells, offering advantages such as biocompatibility, efficient cellular absorption, and the capability to traverse the blood-brain barrier (BBB). In the realm of cancer, particularly gliomas, exosomes play pivotal roles in modulating tumor growth, regulating immunity, and combating drug resistance.

View Article and Find Full Text PDF

Transforming agents: The power of structural modifications in glioblastoma multiforme therapy.

Prog Biophys Mol Biol

December 2024

Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran; Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran. Electronic address:

Glioblastoma (GBM) is a very deadly type of brain tumor with a poor prognosis and a short survival rate. Recent advancements in understanding GBM's molecular and genetic characteristics have led to the development of various therapeutic and diagnostic strategies. Key elements such as microRNAs, lncRNAs, exosomes, angiogenesis, and chromatin modifications are highlighted, alongside significant epigenetic alterations that impact therapy and diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!