Combined effect of simulated microgravity and low-dose ionizing radiation on structure and antibiotic resistance of a synthetic community model of bacteria isolated from spacecraft assembly room.

Life Sci Space Res (Amst)

Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100083, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100083, China; State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing 100083, China.

Published: August 2023

Understanding the structural and antibiotic resistance changes of microbial communities in space environments is critical for identifying potential pathogens that may pose health risks to astronauts and for preventing and controlling microbial contamination. The research to date on microbes under simulated space factors has primarily been carried out on single bacterial species under the individual effects of microgravity or low-dose radiation. However, microgravity (MG) and low-dose ionizing radiation (LDIR) coexist in the actual spacecraft environment, and microorganisms coexist as communities in the spacecraft environment. Thus, the microbial response to the real changes present during space habitation has not been adequately explored. To address this knowledge gap, we compared the dynamics of community composition and antibiotic resistance of synthetic bacterial communities under simulated microgravit, low-dose ionizing radiation, and the conditions combined, as it occurs in spacecraft. To ensure representative bacteria were selected, we co-cultured of 12 bacterial strains isolated from spacecraft cleanrooms. We found that the weakened competition between communities increased the possibility of species coexistence, community diversity, and homogeneity. The number of Bacilli increased significantly, while different species under the combined conditions showed various changes in abundance compared to those under the individual conditions. The resistance of the synthetic community to penicillins increased significantly under low doses of ionizing radiation but did not change significantly under simulated microgravity or the combined conditions. The results of functional predictions revealed that antibiotic biosynthesis and resistance increased dramatically in the community under space environmental stress, which confirmed the results of the drug sensitivity assays. Our results show that combined space environmental factors exert different effects on the microbial community structure and antibiotic resistance, which provides new insights into our understanding of the mechanisms of evolution of microorganisms in spacecraft, and is relevant to effective microbial pollution prevention and control strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lssr.2023.04.005DOI Listing

Publication Analysis

Top Keywords

ionizing radiation
16
antibiotic resistance
16
microgravity low-dose
12
low-dose ionizing
12
resistance synthetic
12
simulated microgravity
8
structure antibiotic
8
synthetic community
8
isolated spacecraft
8
spacecraft environment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!