A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-strengthening and conductive cellulose composite hydrogel for high sensitivity strain sensor and flexible triboelectric nanogenerator. | LitMetric

Self-strengthening and conductive cellulose composite hydrogel for high sensitivity strain sensor and flexible triboelectric nanogenerator.

Int J Biol Macromol

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Published: September 2023

Triboelectric nanogenerators (TENGs) as promising energy harvesting devices have gained increasing attention. However, the fabrication of TENG simultaneously meets the requirements of green start feedstock, flexible, stretchable, and environmentally friendly remains challenging. Herein, the hydroxyethyl cellulose macromonomer (HECM) simultaneously bearing acrylate and hydroxyl groups was first synthesized and used as a crosslinker to prepare the chemically and physically dual-crosslinked cellulose composite hydrogel for an electrode material of stretchable TENG. Meanwhile, the in-situ polymerization of pyrrole endowed the hydrogel with satisfactory conductivity of 0.40 S/m. More impressively, the synergies of the cellulose rigid skeleton and the construction of the dual-crosslinking network significantly improved the mechanical toughness, and the hydrogel exhibited excellent self-strengthening through cyclic compression mechanical training, the self-strengthening efficiency reached 124.7 % after 10 compression cycles. Given these features, the hydrogel was used as wearable strain sensors with extremely high sensitivity (GF = 3.95) for real-time monitoring human motions. Additionally, the hydrogel showed practical applications in stretchable H-TENG for converting mechanical energy into electric energy to light LEDs and power a digital watch, and in self-powered wearable sensors to distinguish human motions and English letters. This work provided a promising strategy for fabricating sustainable, eco-friendly energy harvesting and self-powered electronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.125900DOI Listing

Publication Analysis

Top Keywords

cellulose composite
8
composite hydrogel
8
high sensitivity
8
energy harvesting
8
human motions
8
hydrogel
6
self-strengthening conductive
4
cellulose
4
conductive cellulose
4
hydrogel high
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!