Occurrence, removal, emission and environment risk of 32 antibiotics and metabolites in wastewater treatment plants in Wuhu, China.

Sci Total Environ

Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China. Electronic address:

Published: November 2023

Wastewater treatment plants (WWTPs) are considered important sources of antibiotics and metabolites in aquatic environments and pose a serious threat to the safety of aquatic organisms. In this study, we investigated the seasonal occurrence, removal, emission, and environmental risk assessment (ERA) of 32 antibiotics and metabolites at four WWTPs located in Wuhu, China. The main findings of this study are as follows: Ofloxacin concentrations dominated all WWTPs, and large quantities of sulfachinoxalin were only detected in WWTP 2 treating mixed sewage. The average apparent removal of individual parent antibiotics or metabolites ranged from -94.7 to 100 %. There was a noticeable seasonal emission pattern (independent t-test, t = 9.89, p < 0.001), with lower emissions observed during summer. WWTPs discharged 85.2 ± 43.8 g of antibiotics and metabolites each day. Approximately 87 % of emissions were discharged into the mainstream of the Yangtze River, while the remainder were discharged into its tributary, the Zhanghe River. The total emissions of 21 parent antibiotics were approximately 18 % of the prescription data, indicating that a considerable and alarming amount of prototype drugs entered the receiving water body. Based on the risk quotient (RQ) of the ERA, the Zhanghe River has a moderate risk of ofloxacin (RQ = 0.111-0.583), a low or insignificant risk of sulfamethoxazole (RQ = 0.003-0.048), and an insignificant risk of other antibiotics or metabolites. However, the risk of antibiotics or metabolites in the mainstream of Yangtze River is insignificant. This study could help understand the seasonal emission patterns of antibiotics and metabolites, as well as more antibiotics sensitive of environmental risks in tributary than that in mainstream.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.165681DOI Listing

Publication Analysis

Top Keywords

antibiotics metabolites
16
occurrence removal
8
removal emission
8
wastewater treatment
8
treatment plants
8
wuhu china
8
emission environment
4
environment risk
4
antibiotics
4
risk antibiotics
4

Similar Publications

Antibiotic tolerance presents a significant challenge in eradicating bacterial infections, as tolerant strains can survive antibiotic treatment, contributing to the recurrence of infections and the development of resistance. However, unlike antibiotic resistance, tolerance is not detectable by standard susceptibility assays such as minimal inhibitory concentration (MIC) tests. Consequently, antibiotic tolerance often goes unnoticed in clinical settings.

View Article and Find Full Text PDF

The Citri Reticulatae Pericarpium (CRP), is the aged peel of Citrus fruit, which contains phenols, flavonoids, and polysaccharides. This study aims to investigate dietary CRP supplementation on the growth performance, serum biochemical indices, meat quality, intestinal morphology, microbiota, and metabolite of yellow-feathered broilers. A total of 240 yellow-feathered broilers (1.

View Article and Find Full Text PDF

The synthesis of nanomaterials from PGPB is an exciting approach and it's often used in agriculture as nano-fertilizers and nano-pesticides. The present study reports a new approach to biosynthesis of silver nanoparticles (AgNP), using bacterial metabolites as agents to reduce Ag, which will remain as coating agents able to prevent microbial growth. Silver NP were biosynthesized using the bacterial metabolites produced by the beneficial strain Pseudomonas sp.

View Article and Find Full Text PDF

Sepsis is a major cause of morbidity and mortality, but our understanding of the mechanisms underlying survival or susceptibility is limited. Here, as pathogens often subvert host defence mechanisms, we hypothesized that this might influence the outcome of sepsis. We used microbiota analysis, faecal microbiota transplantation, antibiotic treatment and caecal metabolite analysis to show that gut-microbiota-derived tryptophan metabolites including indoles increased host survival in a mouse model of Serratia marcescens sepsis.

View Article and Find Full Text PDF

A silent killer in the word: Review on Aspergillus flavus strains.

Toxicon

January 2025

Laboratory of Biochemistry and Molecular Biology of Centre Béninois de la Recherche Scientifique et de l'Innovation (CBRSI) 03BP2262 Cotonou, Benin; National Agricultural University, Porto-Novo, Benin. Electronic address:

Filamentous fungi are recognized for their significance in food processing and antibiotic production, as well as their capacity to produce mycotoxins. Numerous secondary metabolites have been investigated, and their occurrence in foodstuffs, both in the field and during the storage of agricultural products, poses a substantial health risk to consumers. Several fungal species capable of producing mycotoxins have been documented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!