Food-energy‑carbon nexus of Himalayan okra-pea cropping system: Impacts of AM-fungi, precision phosphorus and irrigation regimes in an acid Alfisol.

Sci Total Environ

CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, India; ICAR-Indian Agricultural Research Institute, New Delhi, India; ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India. Electronic address:

Published: November 2023

AI Article Synopsis

Article Abstract

Conventional farming practices are energy and carbon-intensive. Low-cost technologies like AM-fungi (AMF) and precision P-management vis-à-vis precision irrigation-scheduling may enhance P-bioavailability, and crop- and water-productivity with reduced energy and carbon-footprints in acid-Alfisol of north-western Himalayas. Hence, an experiment was done in okra (Abelmoschus esculentus)-pea (Pisum sativum) cropping system (OPCS) using AMF (Glomus mosseae) at three inorganic-P levels (50, 75 & 100 % of soil-test based P-dose) and two irrigation-regimes (40 & 80 % AWC). AMF-inoculation significantly enhanced the system-productivity (∼11 %), bio-energy output (∼8 %) and SOC-storage over non-AMF plots in OPCS. Carbon-input use followed the trend of water>diesel>fertilizers> FYM > herbicides> pesticides>AMF in OPCS. AMF-inoculation significantly reduced the carbon-footprints (0.466 kg CO-e kg) by ∼10.2 % over non-AMF plots. Soil-test based 100 % P-dose significantly enhanced the system-productivity (6.3-15.6 %) and bio-energy output (4.7-12.6 %) with lesser carbon-footprints (5.3-15 %) over 50 and 75 % P-dose. Irrigation at 80 % AWC enhanced system-productivity (∼4.1 %), however at 40 % AWC reduced carbon-footprints by ∼11.7 % besides saving irrigation-water by ∼24 % (150 mm ha/year) in OPCS. Hence, farmers must necessarily use AMF-inoculation coupled with soil-test based P-fertilization (75-100 %) while preserving a balance in irrigation water-use at 40-80 % AWC depending upon water-availability for higher crop- and water-productivity besides lesser energy and carbon-footprints in OPCS in Himalayan acid Alfisol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.165589DOI Listing

Publication Analysis

Top Keywords

soil-test based
12
enhanced system-productivity
12
cropping system
8
acid alfisol
8
crop- water-productivity
8
energy carbon-footprints
8
80 % awc
8
bio-energy output
8
non-amf plots
8
reduced carbon-footprints
8

Similar Publications

Soybean-wheat sequence, one of the most vital cropping systems for farmers, has been suffering for productivity stagnation and decline due to several factors. Strategic management of the inputs particularly the nutrients could aid the crops achieve optimum growth and yield. Keeping this in mind, four years of field experiment was conducted to study the effect of combining inorganic as well as organic nutrient sources using soil-test-crop-response (STCR) approach in a randomized block design having ten treatments including control, 100% Recommended Dose of Fertilizers (RDF), 50% RDF, 100% RDF + 5 kg Zn ha (100% RDF + Zn), 100% RDF + 5 t farmyard manure ha (100% RDF + FYM), 50% RDF + 5 t farmyard manure ha (50% RDF + FYM), STCR inorganic with target yield-I (STCR TY-I), STCR inorganic with TY-II, STCR integrated with TY-I (STCR TY-I) and STCR integrated with TY-II (STCR TY-II) with each treatment replicated thrice.

View Article and Find Full Text PDF
Article Synopsis
  • The STCR (Soil Test Crop Response) approach enhances agricultural productivity and soil health by optimizing fertilizer use, which is crucial for food security while minimizing environmental harm.
  • A long-term study conducted in India examined the effects of STCR-based fertilizer recommendations combined with farmyard manure on the yields of various crops, including soybean and aerobic rice.
  • Results indicated that this method significantly increased crop yields and improved soil fertility compared to traditional fertilizer strategies, demonstrating better nutrient uptake and overall soil quality.
View Article and Find Full Text PDF

National nutrient inventories provide surplus phosphorus (P) estimates derived from county-scale mass balance calculations using P inputs from manure and fertilizer sales and P outputs from crop yield data. Although bioavailable P and surplus P are often correlated at the field scale, few studies have investigated the relationship between measured soil P concentrations of large-scale soil testing programs and inventory-based surplus P estimates. In this study, we assessed the relationship between national surplus P data from the NuGIS dataset and laboratory-measured soil test phosphorus (STP) at the county scale for Arkansas, North Carolina, and Oklahoma.

View Article and Find Full Text PDF

Striking the right nutrient balance is essential for sustainable farming and ecosystem health. In this regard, field experiments were conducted in three phases viz., fertility gradient experiment, main experiment and validation experiment through a soil test crop response approach to develop and validate fertilizer prescription equations for sweet corn in comparison with general recommended dose and soil fertility rating approach.

View Article and Find Full Text PDF

The dataset provided details on how tillage methods and nutrient management impacted the productivity of the four crops (mustard>mungbean>Transplanting (T.) aus >Transplanting (T.) aman) cropping system and the overall soil health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!