The antibiotics overuse for infection treatment was the sparkle in the spreading of multi-drug resistance Acinetobacter baumannii in hospitals. In our study, we evaluated the contribution of the aminoglycoside resistance mechanisms of A. baumannii to the resistance surge in some selected Egyptian hospitals with a checkerboard assay application to retrieve the aminoglycoside activity. The resistance profile analysis of collected 200 A. baumannii isolates revealed a multidrug-resistant pattern with limited susceptibilities to aminoglycosides. Analysis of the prevalence of aminoglycoside-modifying enzyme (AMEs) genes revealed the presence of the six AMEs genes either singly or in combination in selected isolates and aph (3)-VIa gene was the predominant one. At the same time, four efflux pump genes of AdeABC and AdeKJL family showed significant (P < 0.001) up-regulation levels. Moreover, the implementation of combination strategy showed fourteen synergistic activities against two high-level aminoglycoside-resistance (HLAR) A. baumannii isolates. The findings highlighted the alarming levels of aminoglycoside resistance in A. baumannii isolates, which proved that a common enzymatic modification mechanism acts synergistically with decreased antibiotic accumulation in acquiring aminoglycoside resistance. Additionally, the study provides useful information for the promising synergistic combination therapy that reduces the therapeutic dose of aminoglycosides used and subsequently increases their clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2023.106255DOI Listing

Publication Analysis

Top Keywords

aminoglycoside resistance
8
acinetobacter baumannii
8
ames genes
8
resistance
5
contribution mechanisms
4
mechanisms aminoglycoside
4
resistance clinical
4
clinical isolates
4
isolates acinetobacter
4
baumannii
4

Similar Publications

Metabolic mutations reduce antibiotic susceptibility of E. coli by pathway-specific bottlenecks.

Mol Syst Biol

January 2025

Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 24, 72076, Tübingen, Germany.

Metabolic variation across pathogenic bacterial strains can impact their susceptibility to antibiotics and promote the evolution of antimicrobial resistance (AMR). However, little is known about how metabolic mutations influence metabolism and which pathways contribute to antibiotic susceptibility. Here, we measured the antibiotic susceptibility of 15,120 Escherichia coli mutants, each with a single amino acid change in one of 346 essential proteins.

View Article and Find Full Text PDF

Macrolides are the first-line compounds used for the treatment of campylobacteriosis. Macrolide resistance remains low in France, with mutations in being the main associated resistance mechanism. However, two erythromycin methyltransferases have also been identified(B), which is mainly described in animal reservoirs, and (N), which is strictly described in humans.

View Article and Find Full Text PDF

Molecular epidemiology of carbapenem-resistant group in Taiwan.

mSphere

December 2024

Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.

particularly the group, is a major cause of nosocomial infections, and carbapenem-resistant spp. are important human pathogens. We collected 492 spp.

View Article and Find Full Text PDF

Objective: To investigate the reversal effect and mechanism of asiatic acid (AA) on multidrug resistance in human adriamycin (ADR) chronic myeloid leukemia K562/ADR cells.

Methods: CCK-8 assay was used to detect the resistance of K562 cells and K562/ADR cells to ADR. CCK-8 assay was used to detect the effect of AA on K562/ADR cell viability and adriamycin sensitization.

View Article and Find Full Text PDF

Distinctive gut antibiotic resistome, potential health risks and underlying pathways upon cerebral ischemia-reperfusion injury.

Environ Pollut

December 2024

Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.

Article Synopsis
  • Antibiotic resistance genes (ARGs) from gut microbiota pose significant health risks and can be influenced by non-antibiotic factors like disease states, particularly in cases of cerebral ischemia-reperfusion injury (I/R) which is common in stroke patients.
  • Changes in the gut antibiotic resistome during I/R show an increase in tetracycline ARGs while other types, like aminoglycoside and glycopeptide ARGs, decrease, suggesting a shift in microbial resistance profiles.
  • The study identifies specific ARG hosts and pathways influenced by I/R, highlighting the increase in multidrug resistance genes and various biosynthetic processes in gut microbiota, providing potential targets for health interventions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!