Ethnopharmacological Relevance: Acute pancreatitis (AP) is an acute inflammatory condition of pancreas with high morbidity and mortality, which has no effective medical treatment. Chaiqin chengqi decoction (CQCQD) has been clinically used for AP for many years in China. However, the underlying mechanisms are still unknown.
Aim Of The Study: To investigate the mechanism of CQCQD on gasdermin D (GSDMD) -mediated pyroptosis in AP.
Materials And Methods: In this study, network pharmacology was used to screen the potential mechanism of CQCQD protecting against AP and then we focused to investigate the mechanism of CQCQD on GSDMD mediated pyroptosis. Mouse models of AP were conducted by caerulein and L-arginine. In order to clarify the mechanism of CQCQD, two kinds of GSDMD gene knockout mice (Gsdmd and Pdx1Gsdmd) were applied. And the potential interaction between the main components of CQCQD and GSDMD was explored by molecular docking.
Results: In the caerulein-induced AP model, CQCQD ameliorated pancreatic pathological injury, attenuated systemic inflammation and serum enzymatic levers. Moreover, network pharmacology analysis showed GSDMD mediated pyroptosis was one of the core targets of CQCQD protecting against AP. Additionally, CQCQD appreciably decreased the levels of pyroptosis-related proteins N-terminal GSDMD, nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3, and cleaved Caspase-1. Furthermore, the protective effect of CQCQD was neutralized in Gsdmd and Pdx1Gsdmd mice in caerulein-induced AP. In addition, we found that CQCQD protects pancreatic tissue from damage and pancreatitis-associated lung injury in the L-arginine-induced mouse model. Moreover, all of the main components of CQCQD possessed binding activity with GSDMD by molecular docking. Seventeen components bound with the human GSDMD Cys191 successfully, which is important for GSDMD pore formation. Among the components, rhein possessed the highest binding activity.
Conclusion: CQCQD could reduce pancreatic necrosis and inflammatory response via inhibiting GSDMD-mediated pyroptosis in acinar cells of AP. Rhein may be the key active ingredient of CQCQD in suppressing pyroptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2023.116920 | DOI Listing |
Phytomedicine
November 2024
West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:
Background: The incidence of hypertriglyceridemia-associated acute pancreatitis (HTG-AP) is increasing globally and more so in China. The characteristics of liver-mediated metabolites and related key enzymes are rarely reported in HTG-AP. Chaiqin chengqi decoction (CQCQD) has been shown to protect against AP including HTG-AP in both patients and rodent models, but the underlying mechanisms in HTG-AP remain unexplored.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2024
Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, China. Electronic address:
Ethnopharmacological Relevance: Acute pancreatitis (AP) is an acute inflammatory condition of pancreas with high morbidity and mortality, which has no effective medical treatment. Chaiqin chengqi decoction (CQCQD) has been clinically used for AP for many years in China. However, the underlying mechanisms are still unknown.
View Article and Find Full Text PDFFront Pharmacol
June 2022
Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China.
Obesity-related acute pancreatitis (AP) is characterized by increasing prevalence worldwide and worse clinical outcomes compared to AP of other etiologies. Chaiqin chengqi decoction (CQCQD), a Chinese herbal formula, has long been used for the clinical management of AP but its therapeutic actions and the underlying mechanisms have not been fully elucidated. This study has investigated the pharmacological mechanisms of CQCQD in a novel mouse model of obesity-related alcohol-induced AP (OA-AP).
View Article and Find Full Text PDFPhytomedicine
May 2022
West China-Washington Mitochondria and Metabolism Centre, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China; Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China. Electronic address:
Background: Acute pancreatitis (AP) is an inflammatory disorder of pancreas that lacks effective specific drugs as well as gold standard laboratory tests for diagnosis and severity assessment. Chaiqin chengqi decoction (CQCQD) has been proven to alleviate the severity and mortality of AP, but its underlying mechanisms remain incompletely understood.
Purpose: To investigate the correlation between metabolic trajectories of the serum and pancreas, the metabolic pathways with respect to the onset and progression of AP, and investigate the effect of CQCQD in modulating the dysregulated pancreatic metabolism of AP.
Phytomedicine
December 2020
Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China. Electronic address:
Background: Chaiqin chengqi decoction (CQCQD) is a Chinese herbal formula derived from dachengqi decoction. CQCQD has been used for the management of acute pancreatitis (AP) in the West China Hospital for more than 30 years. Although CQCQD has a well-established clinical efficacy, little is known about its bioactive ingredients, how they interact with different therapeutic targets and the pathways to produce anti-inflammatory effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!