Food safety threats and deterioration due to the invasion of microorganisms has led to economic losses and food-borne diseases in the food industry; so, development of natural food preservatives is urgently needed when considering the safety of chemically synthesized preservatives. Because of its outstanding antioxidant and antibacterial properties, cinnamon essential oil (CEO) is considered a promising natural preservative. However, CEO's low solubility and easy degradability limits its application in food products. Therefore, some encapsulation and delivery systems have been developed to improve CEO efficiency in food preservation applications. This work discusses the chemical and techno-functional properties of CEO, including its key components and antioxidant/antibacterial properties, and summarizes recent developments on encapsulation and delivery systems for CEO in food preservation applications. Since CEO is currently added to most biopolymeric films/coatings (BFCs) for food preservation, most studies have shown that encapsulation systems can improve the food preservation performance of BFCs containing CEOs. It has been confirmed that various delivery systems could improve the stability and controlled-release properties of CEO, thereby enhancing its ability to extend the shelf life of foods. These encapsulation techniques include spray drying, emulsion systems, complex coacervation (nanoprecipitation), ionic gelation, liposomes, inclusion complexation (cyclodextrins, silica), and electrospinning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cis.2023.102965DOI Listing

Publication Analysis

Top Keywords

food preservation
20
delivery systems
16
encapsulation delivery
12
preservation applications
12
food
9
cinnamon essential
8
essential oil
8
properties ceo
8
systems improve
8
systems
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!