Gram-positive bacterial infection causes high morbidity and mortality worldwide, while the underlying mechanism for host sensing bacterial components and initiating immune responses remains elusive. The NLRP3 inflammasome is a cytosolic multi-protein complex sensing a broad spectrum of endogenous danger signals and environmental irritants. In contrast to canonical NLRP3 inflammasome activation that needs both priming and activation signals, Lipopolysaccharide (LPS) from gram-negative bacteria activates the "one-step" NLRP3 inflammasome in human monocytes, which relies on the TLR4-TRIF-Caspase-8 signaling. Here, we show that in human monocytes, TLR2 agonists such as heat-killed gram-positive bacteria, peptidoglycan (PGN) or synthetic bacterial lipoprotein analog Pam3CysSerLys4 (Pam3CSK4) are able to induce the "one-step" NLRP3 inflammasome activation. Using genetic targeting and pharmacological inhibition approaches, it was found that TLR2 propagates signal through TRAF6, TAK1 and IKKβ, ultimately activated NLRP3 independent of RelA. In addition, IKKβ interacts with NLRP3 directly and affects NLRP3 inflammasome activation. These results reveal the signaling cascade downstream of TLR2 upon sensing gram-positive bacterial infection and activating the "one-step" NLRP3 inflammasome in human monocytes, which provides clue for controlling gram-positive bacterial infection-related inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cyto.2023.156302 | DOI Listing |
Clin Rev Allergy Immunol
December 2024
Division of Allergy and Clinical Immunology, The Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Room 3B.71, Baltimore, MD, 21224, USA.
Asthma is a chronic airway inflammatory disease that affects millions globally. Although glucocorticoids are a mainstay of asthma treatment, a subset of patients show resistance to these therapies, resulting in poor disease control and increased morbidity. The complex mechanisms underlying steroid-resistant asthma (SRA) involve Th1 and Th17 lymphocyte activity, neutrophil recruitment, and NLRP3 inflammasome activation.
View Article and Find Full Text PDFNeurochem Res
January 2025
Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
Depression is a common and complex neuropsychiatric disorder affecting people of all ages worldwide, associated with high rates of relapse and disability. Neohesperidin (NEO) is a dietary flavonoid with applications in therapeutics; however, its effects on depressive-like behavior remain unknown. Here, we evaluated the effects of NEO on depressive-like behavior induced by chronic and unpredictable mild stress (CUMS).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Texas Medical Branch, Galveston, TX, USA.
Background: The misfolding and aggregation of the tau protein into neurofibrillary tangles constitute a central feature of tauopathies. Traumatic brain injury (TBI) has emerged as a potential risk factor, triggering the onset and progression of tauopathies. Our previous research revealed distinct polymorphisms in soluble tau oligomers originating from single versus repetitive mild TBIs.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Background: An emerging theory suggests a link between Alzheimer's disease (AD) and microbial infection. Notably, various microbes have been detected in the post-mortem brains of AD patients and murine models. However, there exists a gap in research concerning the presence and role of microbial infection in the AD retina, which shares common pathogenesis with the brain.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M University Health Science Center, College Station, Texas, USA., College Station, TX, USA.
Background: Current treatments for Alzheimer's disease (AD) lack disease-modifying interventions. Hence, novel therapies capable of restraining AD progression and maintaining better brain function for extended periods after the initial diagnosis have great significance. Extracellular vesicles (EVs) from human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) are attractive in this context due to their robust antiinflammatory properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!