A micro-solid phase extraction (micro-SPE) device packed with a C18 sorbent (10 mg) has been developed for the enrichment and purification of organic water pollutants prior to their analysis using a portable liquid chromatograph with a dual UV detector. To this end, the sorbent was immobilized at the inlet of a 4 mm syringe filter (0.20 µm), which was modified to reduce its internal volume. The filter was coupled to the needle of the chromatograph. After loading the sample and cleaning the sorbent for analyte purification, the device was installed into the injection port of the chromatograph, and the target compounds were desorbed and transferred directly to the chromatographic column with a small volume of organic solvent. Under optimized conditions, sample volumes as large as 50 mL could be processed with the micro-SPE device, while the analytes were desorbed with only 60 µL of methanol. As a result, efficient preconcentration could be reached, as demonstrated for different water contaminants, namely aclonifen, bifenox, tritosulfuron, triflusulfuron-methyl and caffeine. The proposed micro-SPE device was applied to the analysis of different types of water (river, well, sea, ditch and wastewater). The recoveries of the target compounds in samples ranged from 76 % to 109 %, which allowed their detection at low to sub µg/L levels. All operations were carried out manually, and thus, no additional laboratory instruments such as centrifuges, stirrers or evaporators were required. This proof-of-concept study shows that the proposed micro-SPE approach can be considered a reliable and effective option for the on-site analysis of pollutants in environmental water samples by portable liquid chromatography.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2023.464216 | DOI Listing |
J Aerosol Sci
November 2024
National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, 45226, United States.
Trace measurement of aerosol chemical composition in workplace atmospheres requires the development of high-throughput aerosol collectors that are compact, hand-portable, and can be operated using personal pumps. We describe the design and characterization of a compact, high flow, Turbulent-mixing Condensation Aerosol-in-Liquid Concentrator (TCALC) that allows direct collection of aerosols as liquid suspensions, for off-line chemical, biological, or microscopy analysis. The TCALC unit, measuring approximately 12 × 16 × 18 cm, operates at an aerosol sample flowrate of up to 10 L min, using rapid mixing of a hot flow saturated with water vapor and a cold aerosol sample flow, thereby promoting condensational growth of aerosol particles.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, China.
The ability to rapidly charge batteries is crucial for widespread electrification across a number of key sectors, including transportation, grid storage, and portable electronics. Nevertheless, conventional Li-ion batteries with organic liquid electrolytes face significant technical challenges in achieving rapid charging rates without sacrificing electrochemical efficiency and safety. Solid-state batteries (SSBs) offer intrinsic stability and safety over their liquid counterparts, which can potentially bring exciting opportunities for fast charging applications.
View Article and Find Full Text PDFJ Electr Bioimpedance
January 2024
Agrotechlink, Joinville, Brazil.
The conductive polymeric electrodes using 3D printing are an innovative material development with the advantage of the flexibility of integrating isolated polymers with a higher electrical conductivity of carbon-based materials, generating new possibilities in environmental, healthcare, and food monitoring. Based on the morphology, geometric arrangement, and dielectric properties of the composites, the performance of the electrodes is improved. Structural designs are optimized to enhance functionalities such as adhesion, catalytic activity, and the reduction of interface energy.
View Article and Find Full Text PDFSci Total Environ
December 2024
Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1084, Prague 4, Czech Republic.
Exposure of cell cultures at air-liquid interface (ALI), mimicking i.e. human lung surface, is believed to be one of the most realistic means to model toxicity of complex mixtures of pollutants on human health.
View Article and Find Full Text PDFTalanta
December 2024
College of Chemistry, Liaoning University, Shenyang, 110036, China. Electronic address:
The development of a novel multifunctional adsorbent for the sensitive detection and capture of antibiotic residues in environmental and food samples presents a significant challenge. In this study, we synthesized a pioneering nanocomposite, ILs@PC, by encapsulating task-specific ionic liquids (ILs) within nitrogen-doped porous carbon (PC) derived from metal-triazolate frameworks. This ILs@PC nanocomposite functions as a multifunctional adsorbent in dispersive solid-phase extraction (DSPE), enabling simultaneous sorptive removal, sensitive detection, and molecular sieve selection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!