Effect of simulated root exudates on the distribution, bioavailability, and fractionation of potentially toxic elements (PTEs) in various particle size fractions of zinc smelting slag: Implication of direct revegetation.

J Environ Manage

College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China. Electronic address:

Published: October 2023

Direct revegetation is a promising strategy for phytostabilization of metal smelting slag sites. Slag comes into direct contact with root exudates when slag sites undergo direct revegetation. The slag particle size fractions are considered the key factor influencing the geochemical behaviour of potentially toxic elements (PTEs). However, the effects of root exudates on the geochemical behaviours of PTEs in various slag particle size fractions remain unclear. Here, the effects of simulated root exudates of perennial ryegrass (Lolium perenne) directly revegetated at a zinc smelting slag site on the distribution, bioavailability, and fractionation of PTEs (Cu, Pb, Zn, and Cd) in various slag particle size fractions were investigated. The results showed that PTEs mainly occurred in the <1 mm slag particles; the mass loads of PTEs in the <1 mm slag particles were higher than those in the >1 mm slag particles. The bioavailability of Cu, Zn, and Cd rather than Pb in the slag increased as the particle size decreased. There was a decrease in the <0.25 and 1-2 mm slag particles and an increase in the 0.25-0.5, 0.5-1, and >2 mm slag particles in the presence of root exudates. Root exudates enhanced the transformation of acid-soluble PTEs into other more stable fractions in various slag particle size fractions. Root exudates enhanced the aggregation of slag particles associated with the migration of PTEs, causing differences in the geochemical behaviour of PTEs in various slag particle size fractions. These findings are beneficial for understanding the geochemical behaviour of PTEs in metal smelting slags undergoing direct revegetation and provide an important basis for the guidance of environmental risk management of the revegetated metal smelting slag sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.118642DOI Listing

Publication Analysis

Top Keywords

root exudates
16
particle size
16
size fractions
16
smelting slag
12
direct revegetation
12
slag particle
12
simulated root
8
distribution bioavailability
8
bioavailability fractionation
8
toxic elements
8

Similar Publications

Soil contamination with toxic heavy metals [such as aluminum (Al)] is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizo-bacteria (PGPR) are the major protectants to alleviate metal toxicity, the study of these bacteria to ameliorate the toxic effects of Al is limited. Therefore, the present study was conducted to investigate the combined effects of different levels of (5 ppm and 10 ppm) of accession number of MT123456 on plant growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress and response of antioxidant compounds (enzymatic and nonenzymatic), and their specific gene expression, sugars, nutritional status of the plant, organic acid exudation pattern and Al accumulation from the different parts of the plants, which was spiked with different levels of Al [0 µM (i.

View Article and Find Full Text PDF

Inhibiting pathogen chemotaxis is a promising strategy for reducing disease pressure. However, this strategy is currently in the proof-of-concept stage. Here, was used as a model, as its biflagellated zoospores could sense genistein, a soybean root exudate, to navigate host and initiate infection.

View Article and Find Full Text PDF

Background: Legumes, in the initial event of symbiosis, secrete flavonoids into the rhizosphere to attract rhizobia. This study was conducted to investigate the relationship between crop root exudates and soybean nodule development under intercropping patterns.

Method: A two years field experiments was carried out and combined with pot experiments to quantify the effects of planting mode, i.

View Article and Find Full Text PDF

Elevated CO (eCO) stimulates productivity and nutrient demand of crops. Thus, comprehensively understanding the crop phosphorus (P) acquisition strategy is critical for sustaining agriculture to combat climate changes. Here, wheat ( L) was planted in field in the eCO (550 µmol mol) and ambient CO (aCO, 415 µmol mol) environments.

View Article and Find Full Text PDF

Mangrove forests are increasingly recognized as vital blue carbon ecosystems due to their high carbon sequestration capacity, primarily through the accumulation of soil organic carbon (SOC). Recent research highlights that, in addition to SOC, dissolved inorganic carbon (DIC), particularly in the form of bicarbonate (HCO₃⁻), plays a crucial role in carbon sequestration by being exported from these ecosystems to adjacent coastal waters. This study aims to investigate the previously unexamined mechanisms behind bicarbonate production in mangrove soils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!