Embracing the future of circular bio-enabled economy: unveiling the prospects of microbial fuel cells in achieving true sustainable energy.

Environ Sci Pollut Res Int

Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Private Bag X20 Hatfield, Pretoria, 0028, South Africa.

Published: August 2023

Sustainable development and energy security, highlighted by the United Nations Sustainable Development Goals (SDGs), necessitate the use of renewable and sustainable energy sources. However, upon careful evaluation of literature, we have discovered that many existing and emerging renewable energy systems (RESs) prioritize renewability over true sustainability. These systems not only suffer from performance inconsistencies and lack of scalability but also fall short in fully embodying the principles of sustainability and circular economy. To address this gap, we propose considering microbial fuel cells (MFCs) as a viable alternative and integral part of the renewable energy ecosystem. MFCs harness the omnipresence, abundance, and cost-effectiveness of their essential components, making them a promising candidate. Through our comprehensive analysis, we shed light on the limitations and advancements of this technology, which underscore the remarkable potential of MFCs to revolutionize our perception of clean, sustainable energy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439864PMC
http://dx.doi.org/10.1007/s11356-023-28717-0DOI Listing

Publication Analysis

Top Keywords

sustainable energy
12
microbial fuel
8
fuel cells
8
sustainable development
8
renewable energy
8
energy
6
sustainable
5
embracing future
4
future circular
4
circular bio-enabled
4

Similar Publications

The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.

View Article and Find Full Text PDF

This study investigates the structural and dynamic properties of ternary mixtures composed of NaPF, ethylene carbonate (EC), and the ionic liquid choline glycine (ChGly), with a focus on their potential as electrolytes for supercapacitors. The combination of NaPF-EC, known for its high ionic conductivity, with the biodegradable and environmentally friendly ChGly offers a promising approach to enhancing electrolyte performance. Through molecular simulations, we analyze how the inclusion of small concentrations of ChGly affects key properties such as density, cohesive energy, and ion mobility.

View Article and Find Full Text PDF

A butterfly-shaped acceptor with rigid skeleton and unique assembly enables both efficient organic photovoltaics and high-speed organic photodetectors.

Natl Sci Rev

January 2025

State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, China.

It remains challenging to design efficient bifunctional semiconductor materials in organic photovoltaic and photodetector devices. Here, we report a butterfly-shaped molecule, named WD-6, which exhibits low energy disorder and small reorganization energy due to its enhanced molecular rigidity and unique assembly with strong intermolecular interaction. The binary photovoltaic device based on PM6:WD-6 achieved an efficiency of 18.

View Article and Find Full Text PDF

Vertical Farming Systems (VFS) emerge as an approach to optimize plant growth in urban and controlled environments, by enabling sustainable and intensive production in reduced spaces. VFS allow for greater control over growing conditions, such as light, temperature and humidity, resulting in higher quality crops and with less use of resources, such as water and fertilizers. This research investigates the effects of different lighting regimes (Constant and Gaussian) and spectral qualities (white, RBW, blue and red) on the growth, photosynthesis, and biomass accumulation of lentil microgreens () in VFS.

View Article and Find Full Text PDF

The future of cell-free synthetic biology.

Biotechnol Notes

November 2024

Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Cell-free synthetic biology aims at the targeted replication, design, and modification of life processes in open systems by breaking free of constraints such as cell membrane barriers and living cell growth. The beginnings of this systematized technology, which took place in the last century, were used to explore the secrets of life. Currently, with its easy integration with other technologies or disciplines, cell-free synthetic biology is developing into a powerful and effective means of understanding, exploiting, and extending the structure and function of natural living systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!