The technique of site-directed mutagenesis has been used to investigate the mutagenicity of O6-methylguanine (O6-MeG) or hypoxanthine introduced as a single lesion at a specific locus in an M13mp9 RF molecule constructed in vitro. Following transformation of O6-MeG-containing RF molecules into E. coli JM101, mutant progeny phage were produced at a frequency not significantly different from that observed with wild-type M13mp9 RF. The mutant yield was greatly enhanced by exhausting cellular O6-MeG DNA-methyltransferase before transformation. In contrast, hypoxanthine exhibited miscoding mutagenesis in the absence of interference with cellular repair mechanisms. This indicates that cellular hypoxanthine-DNA glycosylase acts inefficiently in the removal of hypoxanthine from DNA in vivo. The precise mutational changes induced by hypoxanthine were determined by DNA sequence analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0027-5107(86)90081-3 | DOI Listing |
Blood Adv
January 2025
Vanderbilt University Medical Center, Nashville, Tennessee, United States.
In plasma, the zymogens factor XII (FXII) and prekallikrein reciprocally convert each other to the proteases FXIIa and plasma kallikrein (PKa). PKa cleaves high-molecular-weight kininogen (HK) to release bradykinin, which contributes to regulation of blood vessel tone and permeability. Plasma FXII is normally in a "closed" conformation that limits activation by PKa.
View Article and Find Full Text PDFFront Mol Neurosci
January 2025
Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
Introduction: The neuron-specific K-Cl cotransporter KCC2 maintains low intracellular chloride levels, which are crucial for fast GABAergic and glycinergic neurotransmission. KCC2 also plays a pivotal role in the development of excitatory glutamatergic neurotransmission by promoting dendritic spine maturation. The cytoplasmic C-terminal domain (KCC2-CTD) plays a critical regulatory role in the molecular mechanisms controlling the cotransporter activity through dimerization, phosphorylation, and protein interaction.
View Article and Find Full Text PDFInt J Food Microbiol
February 2025
MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
Salmonella is an important foodborne pathogen that poses a significant threat to food safety. This study aims to assess the prevalence, genomic features, and colistin-resistant mechanisms of Salmonella isolates collected from 118 retail pork samples from January 2021 to January 2022 in Shanghai, China. Overall, 46 (39.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China. Electronic address:
Point mutations were introduced into specific leucine (L) amino acids within the K domain of SHORT VEGETATIVE PHASE (SVP), and their effects on the SVP-AP1 interaction were assessed. Yeast two-hybrid experiments and β-galactosidase activity assays demonstrated that SVP maintained its capacity to interact with APETALA1 (AP1) despite point mutations at the 108th, 116th, 119th, and 127th leucine residues, where leucine was substituted with alanine (A). However, the mutation of the leucine residue at position 124 to alanine abolished the interaction between SVP and AP1 regardless of whether the mutation was singular or combined with others.
View Article and Find Full Text PDFPhytomedicine
January 2025
Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China. Electronic address:
Background: Staphylococcus aureus is an opportunistic pathogen capable of readily forming biofilms, which can result in life-threatening infections involving different organs. Sanguinarine are benzo[c]phenanthridine alkaloids extracted from the Sanguinaria canadensis L. (Papaveraceae), which have a wide range of biological activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!