Background: Increasing evidence suggests an association between pro-inflammatory diets and cognitive function. However, only a few studies based on small sample sizes have explored the association between pro-inflammatory diets and dementia using the dietary inflammatory index (DII). Additionally, the relationship between DII and different subtypes of dementia, such as Alzheimer's dementia and vascular dementia, remains largely unexplored. Given the changes in brain structure already observed in patients with dementia, we also investigated the association between DII and magnetic resonance imaging (MRI) measures of brain structure to provide some hints to elucidate the potential mechanisms between pro-inflammatory diet and cognitive decline.
Methods: A total of 166,377 UK Biobank participants without dementia at baseline were analyzed. DII calculations were based on the information collected by the 24-h recall questionnaire. Brain structural anatomy and tissue-specific volumes were measured using brain MRI. Cox proportional hazards models, competing risk models, and restricted cubic spline were applied to assess the longitudinal associations. The generalized linear model was used to assess the association between DII and MRI measurements.
Results: During a median follow-up time of 9.46 years, a total of 1372 participants developed dementia. The incidence of all-cause dementia increased by 4.6% for each additional unit of DII [hazard ratio (HR): 1.046]. Besides, DII displayed a "J-shaped" non-linear association with Alzheimer's dementia (P = 0.003). When DII was above 1.30, an increase in DII was significantly associated with an increased risk of Alzheimer's dementia (HR: 1.391, 95%CI: 1.085-1.784, P = 0.009). For brain MRI, the total volume of white matter hyperintensities increased with an increase in DII, whereas the volume of gray matter in the hippocampus decreased.
Conclusions: In this cohort study, higher DII was associated with a higher risk of all-cause dementia and Alzheimer's dementia. However, our findings suggested that the association with DII and vascular and frontotemporal dementia was not significant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362711 | PMC |
http://dx.doi.org/10.1186/s12916-023-02940-5 | DOI Listing |
J Neuroinflammation
January 2025
Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China.
Background: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder worldwide, and microglia are thought to play a central role in neuroinflammatory events occurring in AD. Chemerin, an adipokine, has been implicated in inflammatory diseases and central nervous system disorders, yet its precise function on microglial response in AD remains unknown.
Methods: The APP/PS1 mice were treated with different dosages of chemerin-9 (30 and 60 µg/kg), a bioactive nonapeptide derived from chemerin, every other day for 8 weeks consecutively.
Nat Aging
January 2025
Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.
The abnormal deposition of amyloid β (Aβ), produced by proteolytic cleavage events of amyloid precursor protein involving the protease γ-secretase and subsequent polymerization into amyloid plaques, plays a key role in the neuropathology of Alzheimer's disease (AD). Here we show that ErbB3 binding protein 1 (EBP1)/proliferation-associated 2G4 (PA2G4) interacts with presenilin, a catalytic subunit of γ-secretase, inhibiting Aβ production. Mice lacking forebrain Ebp1/Pa2g4 recapitulate the representative phenotypes of late-onset sporadic AD, displaying an age-dependent increase in Aβ deposition, amyloid plaques and cognitive dysfunction.
View Article and Find Full Text PDFNat Aging
January 2025
Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
Traditional approaches to studying astrocyte heterogeneity have mostly focused on analyzing static properties, failing to identify whether subtypes represent intermediate or final states of reactive astrocytes. Here we show that previously proposed neuroprotective and neurotoxic astrocytes are transitional states rather than distinct subtypes, as revealed through time-series multiomic sequencing. Neuroprotective astrocytes are an intermediate state of the transition from a nonreactive to a neurotoxic state in response to neuroinflammation, a process regulated by the mTOR signaling pathway.
View Article and Find Full Text PDFCommun Med (Lond)
January 2025
Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
Background: Alzheimer's disease (AD) is a major neurodegenerative disorder with significant environmental factors, including diet and lifestyle, influencing its onset and progression. Although previous studies have suggested that certain diets may reduce the incidence of AD, the underlying mechanisms remain unclear.
Method: In this post-hoc analysis of a randomized crossover study of 20 elderly adults, we investigated the effects of a modified Mediterranean ketogenic diet (MMKD) on the plasma lipidome in the context of AD biomarkers, analyzing 784 lipid species across 47 classes using a targeted lipidomics platform.
Nature
January 2025
Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
Polygenic genome editing in human embryos and germ cells is predicted to become feasible in the next three decades. Several recent books and academic papers have outlined the ethical concerns raised by germline genome editing and the opportunities that it may present. To date, no attempts have been made to predict the consequences of altering specific variants associated with polygenic diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!