Listeria monocytogenes is an opportunistic foodborne pathogen. It can resist stress conditions by adapting through the production of biofilms, which represents a serious problem for the food industry. It is classified into 14 serotypes, although only four (1/2a, 1/2b, 1/2c, and 4b) account for 89.0-98.0% of listeriosis cases worldwide. The objective of this study was to detect and serotype L.monocytogenes isolated from different food matrices from processing plants in Argentina. In the period 2016-2021, 1832 samples (meat, ready-to-eat foods, ice cream, dairy foods, and frozen vegetables) were analyzed, of which 226 (12.34%) isolates compatible with L.monocytogenes were detected. At the same time, environmental and surface samplings were performed in processing plants for ready-to-eat foods, sausages and dairy products, where environmental contamination with L.monocytogenes was detected in numerous critical points of the process, yielding a positivity rate of 22.7%. The molecular analysis of serogroups was performed, where it was observed that serogroup IIb was the most frequent with 66.5% (n=107), and in descending order IIc with 22.3% (n=36), and IIa (n=9) and IVb (n=9) with 5.6%. The serogroup mostly isolated in environmental monitoring was IIb. This work highlights the importance of the detection and serotyping of L.monocytogenes for taking actionable measures and identifying outbreaks, and is the first study in Argentina to describe an extensive study in food matrices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ram.2023.05.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!