CYP1A1, CYP1A2, and CYP1B1 have a high degree of sequence similarity, similar substrate selectivities and induction characteristics. However, experiments suggest that there are significant differences in their quaternary structures and function. The goal of this study was to characterize the CYP1 proteins regarding their ability to form protein-protein complexes, lipid microdomain localization, and ultimately function. This was accomplished by examining (1) substrate metabolism of the CYP1s as a function of NADPH-cytochrome P450 reductase (POR) concentration, and (2) quaternary structure, using bioluminescence resonance energy transfer (BRET). Both CYP1As were able to form BRET-detectable homomeric complexes, which was not observed with CYP1B1. When activities were measured as a function of [POR], CYP1A1 and CYP1B1 showed a hyperbolic response, consistent with mass-action binding; however, CYP1A2 produced a sigmoidal response, suggesting that the homomeric complex affected its function. Differences were observed in their ability to form heteromeric complexes. Whereas CYP1B1 and CYP1A1 formed a complex, neither the CYP1A1/CYP1A2 nor the CYP1B1/CYP1A2 pair formed BRET-detectable complexes. These proteins also differed in their lipid microdomain localization, with CYP1A2 and CYP1B1 residing in ordered membranes, and CYP1A1 in the disordered lipid regions. Taken together, despite their sequence similarities, there are substantial differences in quaternary structures and microdomain localization that can influence enzymatic activities. As these proteins exist in the endoplasmic reticulum with other ER-resident proteins, the P450s need to be considered as part of multi-enzyme systems rather than simply monomeric proteins interacting with their redox partners.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529082 | PMC |
http://dx.doi.org/10.1016/j.jinorgbio.2023.112325 | DOI Listing |
Sci Bull (Beijing)
December 2024
CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100039, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China. Electronic address:
Nucleotide-binding leucine-rich repeat (NLR) receptors mediate pathogen effector-triggered immunity (ETI) in plants, and a subclass of NLRs are hypothesized to function at the plasma membrane (PM). However, how NLR traffic and PM delivery are regulated during immune responses remains largely unknown. The rice NLR PigmR confers broad-spectrum resistance to the blast fungus Magnaporthe oryzae.
View Article and Find Full Text PDFFront Physiol
December 2024
Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom.
Introduction: Intracellular Ca signalling regulates membrane permeabilities, enzyme activity, and gene transcription amongst other functions. Large transmembrane Ca electrochemical gradients and low diffusibility between cell compartments potentially generate short-lived, localised, high-[Ca] microdomains. The highest concentration domains likely form between closely apposed membranes, as at amphibian skeletal muscle transverse tubule-sarcoplasmic reticular (T-SR, triad) junctions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland.
The (bladderworts) species are carnivorous plants that prey mainly on invertebrates using traps (bladders) of leaf origin. On the outer surfaces of the trap, there are dome-shaped glands (capitate trichomes). Each such trichome consists of a basal cell, a pedestal cell, and a terminal cell.
View Article and Find Full Text PDFUnlabelled: Many immunotherapies impact T cell function by impacting the immune synapse. While immunotherapy is extremely successful in some patients, in many others, it fails to help or causes complications, including immune-related adverse events. Phosphoprotein Associated with Glycosphingolipid Rich Microdomains 1 (PAG) is a transmembrane scaffold protein with importance in T cell signaling.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States.
The mammalian cell membrane is embedded with biomolecular condensates of protein and lipid clusters, which interact with an underlying viscoelastic cytoskeleton network to organize the cell surface and mechanically interact with the extracellular environment. However, the mechanical and thermodynamic interplay between the viscoelastic network and liquid-liquid phase separation of 2-dimensional (2D) lipid condensates remains poorly understood. Here, we engineer materials composed of 2D lipid membrane condensates embedded within a thin viscoelastic actin network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!