A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Double network structure via ionic bond and covalent bond of carboxymethyl chitosan and poly(ethylene glycol): Factors affecting hydrogel formation. | LitMetric

The factors were studied that affect the formation of DN hydrogel, which was prepared using a water-based, environmental-friendly system. The DN hydrogel was designed and prepared based on a cross-linked, polysaccharide-based, polymer carboxymethyl chitosan (CMCS) via an ionic crosslinking reaction for the first network structure. UV irradiation created a radical crosslinking reaction of poly(ethylene glycol) from a double bond at the chain end for the second network structure. It was found that the optimum hydrogel was produced using 9.5 %v/v of 1000PEGGMA, CMCS 5%w/v, and CaCl 3%w/v. The results showed the highest percentage of the gel fraction was 87.84 % and the hydrogel was stable based on its rheological properties. Factors affecting the hydrogel formation were the concentration and molecular weight of PEGGMA and the concentrations of CMCS and calcium chloride (CaCl). The DN hydrogel had bioactivity due to its octacalcium phosphate (OCP) hydroxyapatite crystal form. In addition, the composite DN scaffold with a conductive polymer of chitosan-grafted-polyaniline (CS-g-PANI) had conduction of 2.33 × 10 S/cm when the concentration of CS-g-PANI was 3 mg/ml, confirming the semi-conductive nature of the material. All the results indicated that DN hydrogel could be a candidate to apply in tissue-engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2023.121130DOI Listing

Publication Analysis

Top Keywords

network structure
12
carboxymethyl chitosan
8
polyethylene glycol
8
hydrogel
8
factors hydrogel
8
hydrogel formation
8
crosslinking reaction
8
double network
4
structure ionic
4
ionic bond
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!