In nasal drug product development, screening studies are vital to select promising compounds or formulations. The Parallel Artificial Membrane Permeability Assay (PAMPA), a high throughput screening tool, has been applied to evaluate drug permeability across several barriers such as the skin or blood-brain barrier. Herein, a new nasal-PAMPA model was optimized to predict nasal permeability, using a biorelevant donor medium containing mucin. The apparent permeability (P) of 15 reference compounds was assessed in six different experimental conditions, and the most discriminating and predictive model was applied to a test drug (piroxicam) and mucoadhesive powder formulations loading the same drug. The model with 0.5% (w/v) mucin in the donor compartment and 2% (w/v) phosphatidylcholine in the lipid membrane accurately distinguished high and low permeable compounds. Additionally, it exhibited the highest correlation with permeation across human nasal epithelial cells, RPMI 2650 (R = 0.93). When applied to powder formulations, this model was sensitive to the presence of mucoadhesive excipients and the drug solid state. Overall, the nasal-PAMPA model was more rapid than cell-based assays, without requiring specialized training or equipment, showing to be a promising in vitro tool that can be applied in drug and formulation screening for nasal delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2023.123252 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!