Evaluating the performance of four assays for carrier screening of spinal muscular atrophy.

Clin Chim Acta

Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China. Electronic address:

Published: August 2023

Background And Aims: Spinal muscular atrophy (SMA) is an autosomal recessive inherited neuromuscular condition caused by biallelic mutations in the survival of motor neuron 1 (SMN1) gene. A homozygous deletion of the SMN1 gene accounts for approximately 95-98% of SMA patients. A highly homologous gene survival motor neuron 2 (SMN2) can partially compensate for SMN1 deletion, and its copy number is associated with disease severity. Population-based carrier screening by simultaneous quantification of SMN1 and SMN2 copy numbers is the best method to prevent SMA.

Materials And Methods: In this study, a total of 516 samples were re-tested for the SMN1 copy number by using quantitative polymerase chain reaction (qPCR), multiplex ligation probe amplification (MLPA), droplet digital PCR (ddPCR), high-resolution melting (HRM) analysis, and PCR-based capillary electrophoresis (PCR/CE) simultaneously. Then, the performance of these methods was compared by using MLPA results as the reference.

Results: The results of qPCR, ddPCR, HRM, and PCR/CE in detecting heterozygous deletion of SMN1 exon 7 and the results of ddPCR, HRM, and PCR/CE in detecting ≥2 copies of SMN1 exon7 are totally consistent with those of MLPA. The sensitivity and specificity of qPCR for detection of 2 copies of SMN1 exon 7 were 99.7% and 98.8%, respectively. The sensitivity and specificity of qPCR for detection of >2 copies of SMN1 exon 7 were 96.3% and 99.8%, respectively. Compared with the MLPA results, the sensitivity and specificity of qPCR and HRM for detection of heterozygous deletion of SMN1 exon 8 were 100% and 100%, respectively. They were 99.4% and 100%, respectively for detection of 2 copies, and 100% and 100%, respectively for detection of >2 copies. The results of PCR/CE in detecting SMN1 exon 8 were consistent with those of MLPA.

Conclusion: All these four methods show excellent performance in detecting heterozygous deletion of SMN1 exon 7. All PCR/CE results are totally concordant with those of MLPA. As the most cost-effective method, qPCR also shows high sensitivity and specificity in detecting SMN1. Taken together, our study provides useful information to select appropriate methods for SMA carrier screening.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cca.2023.117496DOI Listing

Publication Analysis

Top Keywords

smn1 exon
24
deletion smn1
16
sensitivity specificity
16
smn1
13
carrier screening
12
heterozygous deletion
12
copies smn1
12
specificity qpcr
12
spinal muscular
8
muscular atrophy
8

Similar Publications

Background: Most cases of spinal muscular atrophy (SMA) can be diagnosed by copy number analysis of survival motor neuron (SMN) 1. However, a small number of cases of SMA can only be diagnosed by sequencing analysis. We present a case of SMA diagnosed 7 years after the onset of symptoms.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a degenerative neuromuscular condition resulting from a homozygous deletion of the survival motor neuron 1 () gene in 95% of patients. A timely diagnosis via newborn screening (NBS) and initiating treatment before the onset of symptoms are critical for improving health outcomes in affected individuals. We carried out a screening test by quantitative PCR (qPCR) to amplify the exon seven of using dried blood spot (DBS) samples.

View Article and Find Full Text PDF

Background:  Spinal muscular atrophy linked to chromosome 5q (SMA-5q) is a neurodegenerative disorder caused by mutations in the gene.

Objective:  To describe the key demographic, clinical and genetic characteristics, as well as natural history data of patients with SMA-5q.

Methods:  Up to January 2022, 706 patients with confirmed genetic diagnosis of SMA-5q, or their parents, completed a self-reported questionnaire on natural history, genetic characteristics, drug treatments, and multidisciplinary care.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a fatal neuromuscular disorder primarily attributed to the homozygous deletion of the survival motor neuron 1 () gene, with disease severity closely correlated to the copy number variations (CNV) of . Conventional methodologies, however, fail to provide a comprehensive gene overview of and are often both time-intensive and costly. In this study, we present a novel one-step MALDI-TOF MS assay for SMA gene testing.

View Article and Find Full Text PDF
Article Synopsis
  • - Autosomal recessive spinal muscular atrophy (SMA) often leads to severe infant mortality, primarily linked to deletions in the SMN1 gene, particularly exon 7, but routine tests may miss other crucial genetic variants.
  • - Two Chinese SMA patients showed developmental delays and reduced muscle strength; standard tests revealed atypical results, with only one SMN1 copy identified, suggesting misdiagnosis.
  • - By employing RNA sequencing and ultra-long read sequencing, researchers discovered a rare deletion of exons 2a-5 in both patients, highlighting the need for advanced genetic testing in confirming SMA diagnoses.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!