Apis mellifera L. (Hymenoptera: Apidae) is fundamental in the production chain, ensuring food diversity through the ecosystem service of pollination. The aim of this work was to evaluate the impact of imidacloprid, orally, topically, and by contact, on A. mellifera workers and to verify the presence of this active ingredient in honey. Toxicity levels were verified by bioassays. In bioassay 1, the levels correspond to the percentages of 100, 10, 1, 0.1, and 0.01% of the recommended concentration for field application of the commercial product Nortox® (active ingredient imidacloprid), with which we obtained the mean lethal concentration (LC) in 48 h for A. mellifera, determining the concentration ranges to be used in the subsequent bioassays. Bioassays 2 and 3 followed the guidelines of the Organization for Economic Cooperation and Development, which specify the LC (48 h). In bioassay 4, the LC (48 h) and the survival rate of bees for a period of 120 h were determined by contact with a surface contaminated with imidacloprid, and in bioassay 5, the interference of the insecticide with the flight behavior of bees was evaluated. Honey samples were collected in agroecological and conventional georeferenced apiaries and traces of the imidacloprid were detected by means of high-performance liquid chromatography (HPLC-UV) with extraction by SPE C18. Bee survival was directly affected by the concentration and exposure time, as well behavioral performance, demonstrating the residual effect of imidacloprid on A. mellifera workers. Honey samples from a conventional apiary showed detection above the maximum residue limits (MRL) allowed by the European Union (0.05 μg mL), but samples from other apiaries showed no traces of this insecticide. Imidacloprid affects the survival rate and behavior of Africanized A. mellifera and honey quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.139591 | DOI Listing |
Parasit Vectors
January 2025
Department of Biology, University of Padova, Padova, Italy.
Background: The mite Varroa destructor is the most serious pest of the western honey bee (Apis mellifera) and a major factor in the global decline of colonies. Traditional control methods, such as chemical pesticides, although quick and temporarily effective, leave residues in hive products, harming bees and operators' health, while promoting pathogen resistance and spread. As a sustainable alternative, RNA interference (RNAi) technology has shown great potential for honey bee pest control in laboratory assays, but evidence of effectiveness in the field has been lacking.
View Article and Find Full Text PDFSci Total Environ
January 2025
Université de Lorraine, INRAE, LSE, F-54000 Nancy, France.
Pesticides have a significant impact on the environment, harming valuable non-target organisms like bees. Honeybees, in particular, are ideal bioindicators of pesticide exposure due to extensive research on how pesticides affect their behavior, immunity, development, biomolecules, and detoxification. However, wild pollinators are less studied in terms of pesticide exposure, and their inclusion is essential for a comprehensive risk assessment.
View Article and Find Full Text PDFSci Total Environ
January 2025
Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT 84116, United States.
As the primary pollinator for many crops, honey bees (Apis mellifera) are critically important to food production and the agricultural economy. Adult mosquito control is often suspected by the public and commercial beekeepers to harm honey bees, creating conflicts between industries. To investigate this matter, a two-year field study was conducted on vegetated wetlands in Salt Lake City, Utah, U.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, 230031, China; University of Science and Technology of China, Hefei, 230027, China. Electronic address:
Honey bees usually produce particular sound when they are exposed to air pollution. Based on this principle, we create a citizen science platform to monitor Agricultural Nonpoint Source Pollution (ANSP) based on beehive sounds. Here we show the basic functions of the platform, and illustrate its workflow: sampling and uploading data by beekeepers, automated detection of target compounds from beehive sound recordings, and the outcome of which can be analysed with respect to the motivating management objective.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil. Electronic address:
Bee population decline is associated with various stressors, including exposure to pollutants. Among these, titanium dioxide (TiO), an emerging nanoparticle (NP) pollutant, potentially affects living organisms, including bees. This study evaluates the impact of TiO NPs ingestion (1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!