Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding nanoplastic (NP, or nanoparticle in general) toxicity requires establishing the causal relationships between the physical properties of the nanoparticles and their biological impact. We use spectroscopic, zeta-potential, and dynamic light scattering (DLS) techniques to investigate the formation, structure, and catalytic properties of hemoglobin corona complexes with polystyrene NPs (0-10 mg/mL) of various diameters (20, 50, 100, 500, and 5000 nm). Resonance light scattering, zeta-potential analysis, and DLS demonstrated that hemoglobin corona complexes formed different forms of aggregates with NPs in terms of diameter. Medium-sized (100 nm) NPs induced the most significant conformational alterations in the protein corona compared to smaller and larger ones, which was revealed by spectroscopic assays. However, the catalase-like activity of hemoglobin was promoted in the presence of 100 nm NPs by as high as 35.2 %. NP curvature and surface area are antagonistic factors that govern the conformation of proteins together. This also suggests that 100 nm NPs are more likely to disrupt protein-dependent physiological processes at a given mass concentration than small or large NPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.165617 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!