Advanced in vitro hemocompatibility assessment of biomaterials using a new flow incubation system.

Biomater Adv

Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.

Published: October 2023

Physiologically relevant in vitro hemocompatibility assessment of biomaterials remains challenging. We present a new setup that enables standardized whole blood incubation of biomedical materials under flow. A blood volume of 2 mL is recirculated over test surfaces in a custom-made parallel plate incubation system to determine the activation of hemostasis and inflammation. Controlled physiological shear rates between 125 s and 1250 s and minimized contact to air are combined with a natural-like pumping process. A unique feature of this setup allows tracing adhesion of blood cells to test surfaces microscopically in situ. Validation testing was performed in comparison to previously applied whole blood incubation methodologies. Experiments with the newly developed setup showed that even small obstacles to blood flow activate blood (independent of materials-induced blood activation levels); that adhesion of blood cells to biomaterials equilibrates within 5 to 10 min; that high shear rates (1250 compared to 375 s) induce platelet activation; and that hemolysis, platelet factor 4 (PF4) release and platelet loss - but not thrombin formation - depend on shear rate (within the range investigated, 125 to 1250 s).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2023.213555DOI Listing

Publication Analysis

Top Keywords

vitro hemocompatibility
8
hemocompatibility assessment
8
assessment biomaterials
8
incubation system
8
blood
8
blood incubation
8
test surfaces
8
shear rates
8
adhesion blood
8
blood cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!