The demand for flexible strain sensors with high sensitivity and durability has increased significantly. However, traditional sensors are limited in terms of their detection ranges and fabrications. In this work, a space stacking method was proposed to fabricate natural rubber (NR)/ TiCT (MXene)/silica (SiO) films that possessed exceptional electrical conductivity, sensitivity and reliability. The introduction of SiO into the NR/MXene composite enabled the construction of an "island-chain structure", which promoted the formation of conductive pathways and significantly improved the conductivity of the composite. Specifically, the electrical conductivity of the NR/MXene/10 wt%SiO composite was enhanced by about 200 times compared to that of the NR/MXene composite alone (from 0.07 to 13.4 S/m). Additionally, the "island-chain structure" further enhanced the sensing properties of the NR/MXene/10 wt%SiO composite, as evidenced by its excellent sensitivity (GF = 189.2), rapid response time (102 ms), and good repeatability over 10,000 cycles. The fabricated device demonstrates an outstanding mechanical sensing performance and can accurately detect human physiological signals. Specifically, the device serves as a strain detector, recognizing different strain signals by monitoring the movement of fingers, arms, and thighs. This study provides critical insights into composite manufacturing with exceptional conductivity, flexibility and stability, which are essential properties for creating high-performance flexible sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.07.093 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China.
Deep eutectic solvent (DES)-based conductive hydrogels have attracted great interest in the building of flexible electronic devices that can be used to replace conventional temperature-intolerant hydrogels and expensive ionic liquid gels. However, current DES-based conductive hydrogels obtained have limited mechanical strength, high hysteresis, and poor microdeformation sensitivity of the assembled sensors. In this work, a rubber-like conductive hydrogel based on -acryloylglycinamide (NAGA) and DES (acetylcholine chloride/acrylamide) has been synthesized by a one-step method.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, 800 Dongchuan Road, 200240, Shanghai, CHINA.
Ionogels have attracted considerable attention as versatile materials due to their unique ionic conductivity and thermal stability. However, relatively weak mechanical performance of many existing ionogels has hindered their broader application. Herein, we develop robust, tough, and impact-resistant mechanically interlocked network ionogels (IGMINs) by incorporating ion liquids with mechanical bonds that can dissipate energy while maintain structural stability.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
Current hydrogel strain sensors have never been integrated into dynamic organ-on-a-chip (OOC) due to the lack of sensitivity in aqueous cell culture systems. To enhance sensing performance, a novel strain sensor is presented in which the MXene layer is coated on the bottom surface of a pre-stretched anti-swelling hydrogel substrate of di-acrylated Pluronic F127 (F127-DA) and chitosan (CS) for isolation from the cell culture on the top surface. The fabricated strain sensors display high sensitivity (gauge factor of 290.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France.
Unlabelled: MFE01 is an environmental bacterium characterized by an hyperactive type 6 secretion system (T6SS) and a strong emission of volatile organic compounds (VOCs). In a previous study, a transposition mutant, 3H5, exhibited an inactive T6SS and altered VOC emission. In 3H5, the interruption of gene by the transposon was insufficient to explain these phenotypes.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou 311121, Zhejiang, People's Republic of China. Electronic address:
To achieve the green and sustainable development of environment, biocompatible hydrogels with exceptional ionic conductivity and flexibility are highly desired for intelligent and wearable sensors. However, it remains a great challenge to obtain biopolymer hydrogel-based sensors with high transparency, excellent mechanical properties, and good adhesion ability simultaneously. Herein, starch/polyacrylamide double-network hydrogel is achieved to endow the multifunctionality of traditional hydrogel sensor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!