Chromium (Cr) pollution caused by the discharge of industrial wastewater into rivers poses a significant threat to the environment, aquatic and human life, as well as agricultural crops irrigated by these rivers. This paper employs artificial intelligence (AI) to introduce a new framework for modeling the fate, transport, and estimation of Cr from its point of discharge into the river until it is absorbed by agricultural products. The framework is demonstrated through its application to the case study River, which serves as the primary water resource for tomato production irrigation in Mashhad city, Iran. Measurements of Cr concentration are taken at three different river depths and in tomato leaves from agricultural lands irrigated by the river, allowing for the identification of bioaccumulation effects. By employing boundary conditions and smart algorithms, various aspects of control systems are evaluated. The concentration of Cr in crops exhibits an accumulative trend, reaching up to 1.29 µg/g by the time of harvest. Using data collected from the case study and exploring different scenarios, AI models are developed to estimate the Cr concentration in tomato leaves. The tested AI models include linear regression (LR), neural network (NN) classifier, and NN regressor, yielding goodness-of-fit values (R) of 0.931, 0.874, and 0.946, respectively. These results indicate that the NN regressor is the most accurate model, followed by the LR, for estimating Cr levels in tomato leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2023.115269DOI Listing

Publication Analysis

Top Keywords

case study
12
tomato leaves
12
agricultural crops
8
novel ai-based
4
ai-based approach
4
approach modelling
4
modelling fate
4
fate transportation
4
transportation prediction
4
prediction chromium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!