Next-generation sequencing (NGS) has been proven to address some of the limitations of the current testing methods for adventitious virus detection in biologics. The International Alliance for Biological Standardization (IABS), the U.S. Food and Drug Administration (FDA), and the European Directorate for the Quality of Medicines and Healthcare (EDQM) co-organized the "3rd Conference on Next-generation Sequencing for Adventitious Virus Detection in Biologics for Humans and Animals", which was held on September 27-28, 2022, in Rockville, Maryland, U.S.A. The meeting gathered international representatives from regulatory and public health authorities and other government agencies, industry, contract research organizations, and academia to present the current status of NGS applications and the progress on NGS standardization and validation for detection of viral adventitious agents in biologics, including human and animal vaccines, gene therapies, and biotherapeutics. Current regulatory expectations were discussed for developing a scientific consensus regarding using NGS for detection of adventitious viruses. Although there are ongoing improvements in the NGS workflow, the development of reference materials for facilitating method qualification and validation support the current use of NGS for adventitious virus detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522920PMC
http://dx.doi.org/10.1016/j.biologicals.2023.101696DOI Listing

Publication Analysis

Top Keywords

adventitious virus
16
virus detection
16
next-generation sequencing
12
detection biologics
12
conference next-generation
8
sequencing adventitious
8
biologics humans
8
adventitious
6
detection
6
ngs
6

Similar Publications

Virus Filtration Development for Adeno-Associated Virus-Based Gene Therapy Products.

Biotechnol J

January 2025

Drug Substance Development, Spark Therapeutics, Inc., Philadelphia, USA.

Adeno-associated virus (AAV) vectors have become a leading platform for gene delivery. A major portion of gene therapy currently in clinical trials are AAV-based for a wide range of diseases. A commonly used method for AAV production is by mammalian or insect cell culture, with or without added viruses to introduce needed genetic elements for AAV production.

View Article and Find Full Text PDF

Cell Identification, Characterization, and Documentation for Use in the Production of Biological Products.

Arch Razi Inst

June 2024

Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), P.O. Box 31975-148, Karaj, Iran.

There is always a concern about the quality of cell-based products in terms of the contamination of the cells and their lack of efficiency. Therefore, it is of prime importance to ensure these cells' identity, purity, efficacy, and suitability for the production of biological products and diagnostic uses. Hence, cells must be identified, evaluated, documented, and stored to be used consistently and efficiently.

View Article and Find Full Text PDF

Identification of infectious viruses for risk-based virus testing of CHO unprocessed bulk using next-generation sequencing.

Biotechnol Prog

December 2024

Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA.

It is important to increase manufacturing speed to make medicines more widely available. One bottleneck for CHO-based drug substance release is the in vitro viral (IVV) cell-based assay on unprocessed bulk. To increase process speed, we evaluate the suitability of replacing the IVV cell-based assay with next-generation sequencing (NGS).

View Article and Find Full Text PDF

Objective: During the COVID-19 pandemic, universal mask-wearing became one of the main public health interventions. Because of this, most physical examinations, including lung auscultation, were done while patients were wearing surgical face masks. The aim of this study was to investigate whether mask wearing has an impact on pulmonologist assessment during auscultation of the lungs.

View Article and Find Full Text PDF

In the past few years NGS has become the technology of choice to replace animal-based virus safety methods and this has been strengthened by the recent revision to the ICHQ5A virus safety chapter. Here we describe the validation of an NGS method using an agnostic analysis to detect and identify RNA virus and actively replicating DNA virus contaminants in cell banks. We report the results of the validation of each step in the sequencing process that established quality criteria to ensure consistent sequencing data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!