Junctions provide a wealth of information on the symmetry of the order parameter of superconductors. We analyze junctions between a scanning tunneling microscope (STM) tip and superconducting twisted bilayer graphene (TBG) and TBG Josephson junctions (JJs). We compare superconducting phases that are even or odd under valley exchange (s- or f-wave). The critical current in mixed (s and f) JJs strongly depends on the angle between the junction and the lattice. In STM-TBG junctions, due to Andreev reflection, the f-wave leads to a prominent peak in subgap conductance, as seen in experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.131.016003DOI Listing

Publication Analysis

Top Keywords

twisted bilayer
8
bilayer graphene
8
junctions
5
junctions superconducting
4
superconducting symmetry
4
symmetry twisted
4
graphene junctions
4
junctions provide
4
provide wealth
4
wealth symmetry
4

Similar Publications

Quasiperiodic Pairing in Graphene Quasicrystals.

Nano Lett

January 2025

Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea.

We investigate the superconducting instabilities of twisted bilayer graphene quasicrystals (TBGQCs) obtained by stacking two monolayer graphene sheets with 30° relative twisting. The electronic energy spectrum of the TBGQC contains periodic energy ranges (PERs) and quasiperiodic energy ranges (QERs), where the underlying local density of states (LDOS) exhibits periodic and quasiperiodic distribution, respectively. We found that superconductivity in the PER is a simple superposition of two monolayer superconductors.

View Article and Find Full Text PDF

Experimental detection of antiferromagnetic order in two-dimensional materials is a challenging task. Identifying multidomain antiferromagnetic textures via the current techniques is even more difficult. Therefore, we investigate the higher-order multipole moments in twisted bilayer MnPSe.

View Article and Find Full Text PDF

The discovery of moiré physics in two-dimensional (2D) materials has opened new avenues for exploring unique physical and chemical properties induced by intralayer/interlayer interactions. This study reports the experimental observation of moiré patterns in 2D bismuth oxyselenide (BiOSe) nanosheets grown through one-pot chemical reaction methods and a sonication-assisted layer separations technique. Our findings demonstrate that these moiré patterns result from the angular stacking of the nanosheets at various twist angles, leading to the formation of moiré superlattices (MSLs) with distinct periodicities.

View Article and Find Full Text PDF

In a dilute two-dimensional electron gas, Coulomb interactions can stabilize the formation of a Wigner crystal. Although Wigner crystals are topologically trivial, it has been predicted that electrons in a partially filled band can break continuous translational symmetry and time-reversal symmetry spontaneously, resulting in a type of topological electron crystal known as an anomalous Hall crystal. Here we report signatures of a generalized version of the anomalous Hall crystal in twisted bilayer-trilayer graphene, whose formation is driven by the moiré potential.

View Article and Find Full Text PDF

The discovery of superconductivity in twisted bilayer and trilayer graphene has generated tremendous interest. The key feature of these systems is an interplay between interlayer coupling and a moiré superlattice that gives rise to low-energy flat bands with strong correlations. Flat bands can also be induced by moiré patterns in lattice-mismatched and/or twisted heterostructures of other two-dimensional materials, such as transition metal dichalcogenides (TMDs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!