Early identification and intervention of acute respiratory distress syndrome (ARDS) are particularly important. This study aimed to construct predictive models for ARDS following severe acute pancreatitis (SAP) by artificial neural networks and logistic regression. The artificial neural networks model was constructed using clinical data from 214 SAP patients. The patient cohort was randomly divided into a training set and a test set, with 149 patients allocated to the training set and 65 patients assigned to the test set. The artificial neural networks and logistic regression models were trained by the training set, and then the performance of both models was evaluated using the test set. The sensitivity, specificity, PPV, NPV, accuracy, and AUC value of artificial neural networks model were 68.0%, 87.5%, 77.3%, 81.4%, 80.0%, 0.853 ± 0.054 (95% CI: 0.749-0.958). The sensitivity, specificity, PPV, NPV, accuracy and AUC value of logistic regression model were 48.7%, 85.3%, 65.5%, 74.4%, 72.0%, 0.799 ± 0.045 (95% CI: 0.710-0.888). There were no significant differences between the artificial neural networks and logistic regression models in predictive performance. Bedside Index of Severity in Acute Pancreatitis score, procalcitonin, prothrombin time, and serum calcium were the most important predictive variables in the artificial neural networks model. The discrimination abilities of logistic regression and artificial neural networks models in predicting SAP-related ARDS were similar. It is advisable to choose the model according to the specific research purpose.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662815 | PMC |
http://dx.doi.org/10.1097/MD.0000000000034399 | DOI Listing |
Adv Mater
January 2025
Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Haidian, Beijing, 100084, China.
Quantitative assessment for post-stroke spasticity remains a significant challenge due to the encountered variable resistance during passive stretching, which can lead to the widely used modified Ashworth scale (MAS) for spasticity assessment depending heavily on rehabilitation physicians. To address these challenges, a high-force-output triboelectric soft pneumatic actuator (TENG-SPA) inspired by a lobster tail is developed. The bioinspired TENG-SPA can generate approximately 20 N at 0.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, 116024, China.
To achieve efficient size tuning of printed microstructures on insulating substrates, an integrated process parameter intelligent optimization design framework for alternating current pulse modulation electrohydrodynamic (AC-EHD) printing is proposed for the first time. The framework is comprised of two stages: the construction of a prediction model and the acquisition of process parameters. The first stage employs the elk herd optimizer(EHO)-artificial neural network(ANN) to establish a mapping relationship between printing process parameters and the size of deposited droplets.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China.
Photovoltaic arrays are exposed to outdoor conditions year-round, leading to degradation, cracks, open circuits, and other faults. Hence, the establishment of an effective fault diagnosis system for photovoltaic arrays is of paramount importance. However, existing fault diagnosis methods often trade off between high accuracy and localization.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, 30-059, Krakow, Poland.
In this study, a predictive maintenance (PdM) system focused on feature selection for the detection and classification of simulated defects in wind turbine blades has been developed. Traditional PdM systems often rely on numerous, broadly chosen diagnostic indicators derived from vibration data, yet many of these features offer little added value and may even degrade model performance. General feature selection methods might not be suitable for PdM solutions, as information regarding observed faults is often misinterpreted or lost.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Automation and Industrial Informatics, Faculty of Automatic Control and Computer Sciences, National University of Science and Technology Polithenica Bucharest, 313 Spl. Independenței, RO060042 Bucharest, Romania.
Every day, a considerable number of new cybersecurity attacks are reported, and the traditional methods of defense struggle to keep up with them. In the current context of the digital era, where industrial environments handle large data volumes, new cybersecurity solutions are required, and intrusion detection systems (IDSs) based on artificial intelligence (AI) algorithms are coming up with an answer to this critical issue. This paper presents an approach for implementing a generic model of a network-based intrusion detection system for Industry 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!