Cover Crop Cultivar, Species, and Functional Diversity is Reflected in Variable Root Exudation Composition.

J Agric Food Chem

Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado 80523, United States.

Published: August 2023

Cover cropping has emerged as a sustainable alternative to traditional crop rotational practices, yet the effects of variable root exudation from cover crop species and cultivars within species remains unclear. Here, we assess the chemical heterogeneity of root exudates from 16 commonly used cover crop species as well as 3 distinct cultivars of hairy vetch. Plants were grown hydroponically and analyzed via nontargeted gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), and targeted LC-MS/MS to evaluate patterns in root exudate composition across species and functional plant type. Overall, root exudation profiles are heterogeneous across crop species and cultivars. Species within legumes stand out as a unique functional group of plants capable of producing distinct chemical environments rich with complex secondary metabolites, such as triterpenoid saponins (soyasaponins), isoflavonoids, and flavonoids.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.3c02912DOI Listing

Publication Analysis

Top Keywords

cover crop
12
root exudation
12
crop species
12
species functional
8
variable root
8
species cultivars
8
cultivars species
8
species
7
root
5
cover
4

Similar Publications

This study explores the potential use of mould biomass and waste fibres for the production of agrotextiles. First, 20 mould strains were screened for efficient mycelium growth, with optimized conditions of temperature, sources of carbon and nitrogen in the medium, and type of culture (submerged or surface). A method was developed for creating a biocomposite based on the mould mycelium, reinforced with commercial bleached softwood kraft (BSK) pulp and fibre additives (cotton, hemp).

View Article and Find Full Text PDF

Agricultural soil environments contain different types of nematodes in all trophic levels that aid in balancing the soil food web. Beneficial free-living nematodes (FLNs) consist of bacterivores, fungivores, predators, and omnivores that help in the mineralization of the soil and the top-down control of harmful plant-parasitic nematodes (PPNs). Annually, USD 125 billion in worldwide crop losses are caused by PPNs, making them a plant pathogen of great concern for growers.

View Article and Find Full Text PDF

Source segregation and treatment of urine and faeces from dairy cattle reduces GHG and NH emissions in covered storage.

J Environ Manage

January 2025

Agricultural Biosystems Engineering Group, Department of Plant Sciences, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, the Netherlands.

Managing dairy excreta as slurry can result in significant emissions of ammonia (NH) and greenhouse gases (GHGs) during storage and thereafter. Additionally, slurry often has an imbalanced nitrogen (N) to phosphorus (P) ratio for crop fertilization. While various treatments exist to address emissions and nutrient imbalances, each has trade-offs that can result in pollution swapping.

View Article and Find Full Text PDF

The commercial production of passion fruit is geographically limited (California, Florida, and Hawaii), but the development of cold-tolerant varieties could expand it beyond warm-climate states (Stafne et.al. 2023).

View Article and Find Full Text PDF

Peach-associated luteovirus (PaLV) belongs to the genus Luteovirus, family Tombusviridae. To date, PaLV has only been reported in peach (Prunus persica) and its presence detected in the Republic of Georgia (Wu et al., 2017), China (Zhou et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!