Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bacterial polysaccharide is advantageous over plant, algal, and fungal polysaccharides in terms of stability, non-toxicity, and biodegradable nature. In addition, bacterial cell wall polysaccharide (CPs) is very little explored compared to exopolysaccharide. In this study, CPs have been isolated from thermotolerant Chryseobacterium geocarposphaerae DD3 (CPs3) from textile industry dye effluent. Structural characterization of the CPs was done by different techniques, viz., scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis (TGA). CPs3 demonstrated compact non-porous amorphous surface composed of evenly distributed macromolecular lumps. TGA revealed a high thermostability (~ 350 °C) of the polysaccharide. FTIR and NMR confirm the polysaccharidic nature of the polymer, consisting of glucose units linked by both β-(1 → 3) and β-(1 → 4) glycosidic bonds. The functional properties of CPs3 were evaluated for industrial use as additive, especially antibacterial, emulsification, and flocculation capacities. A single-step green synthesis of silver nanoparticle (AgNP) was performed using CPs3. AgNP was characterized using ultraviolet-visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), AFM, and particle size analyses. The CPs3-stabilized AgNP exhibited potential photocatalytic activity against a broad range of azo dyes, congo red (88.33 ± 0.48%), methyl red (76.81 ± 1.03%), and malachite green (47.34 ± 0.90%) after only 3 h of reaction. According to our knowledge, this is the first report on CPs from C. geocarposphaerae. The results demonstrated multifunctionality of CPs3 in both prospective, CPs3 as additive in biotechnology industry as well as Cps3-stabilized AgNP for bioremediation of azo dye.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-023-04648-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!