Analyzer of X-ray images includes a photodetector array with online memory, a single-purpose computer and an imager for the memory contents. The photodetector array incorporates 2 X (64 X 128) bistable photocells, their action potentials are adjusted for brightness. The analyzer is the most useful in verifying parallelism of absorbing plates in X-ray grids, in checking protective devices, and in processing mammograms.
Download full-text PDF |
Source |
---|
Raising the operating temperature of mid-wavelength infrared detectors is critical for meeting the low size, weight, and power (SWaP) demands of infrared imaging systems. In this work, we report and analyze a high operating temperature (HOT) InAsSb nBn mid-wave infrared (MWIR) focal plane array (FPA) and single element photodetectors with AlAs/AlSb superlattices as the electron barrier. Under an applied bias of -350 mV, the nBn photodetectors demonstrate a dark current density of 2.
View Article and Find Full Text PDFWe present a high-performance Ge/Si PIN photodetector that leverages the advanced Ge/Si hetero-bonding method. The sputtered microcrystalline Ge is utilized as the interlayer, in conjunction with Smart-Cut technology, to fabricate high-quality Si-based Ge films. The exfoliated Ge film exhibits a surface roughness of 0.
View Article and Find Full Text PDFLight Sci Appl
January 2025
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, Changchun, 130012, China.
Metal-halide perovskite nanowire array photodetectors based on the solution method are valuable in the field of polarized light detection because of their unique one-dimensional array structure and excellent photoelectric performance. However, the limited wettability of liquids poses challenges for achieving large-scale and high-quality perovskite nanowire arrays. To address this issue, we develop a facile method utilizing capillary condensation to grow high-quality centimeter-scale perovskite nanowire arrays.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China.
Enhancing photoluminescence (PL) efficiency in colloidal quantum dots is pivotal for next-generation near-infrared photodetectors, imaging systems, and photonic devices. Conventional methods, especially metal-based plasmonic structures, suffer from large optical losses, which limits their practical use. Here, we introduce a quasi-bound state in the continuum (quasi-BIC) metasurface on a silicon-on-insulator platform, tailored to provide high-quality factor resonances with minimized losses.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China.
Perovskite semiconductors have shown significant promise for photodetection due to their low effective carrier masses and long carrier lifetimes. However, achieving balanced detection across a broad spectrum-from X-rays to infrared-within a single perovskite photodetector presents challenges. These challenges stem from conflicting requirements for different wavelength ranges, such as the narrow bandgap needed for infrared detection and the low dark current necessary for X-ray sensitivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!