When measuring hyperemic and nonhyperemic pressure ratios with traditional sensor-tipped wires, the inevitable hydrostatic pressure gradient (HPG) may influence treatment decisions. This study aimed to simulate and analyze the effect of a hydrostatic pressure gradient on different indices of functional lesion severity. A hypothetical P-P height difference and subsequent hydrostatic pressure gradient based on previous literature was applied to the pressure measurements from the CONTRAST study. The effect on three indices of functional lesion severity (FFR, P/P, and dPR) was assessed and possible reclassifications in functional significance by the different indices were analyzed. In 602 pressure tracings, simulated hydrostatic pressure gradients led to an absolute change in P of 3.18 ± 1.30 mmHg, resulting in an overall increase in FFR, P/P and dPR of 0.02 ± 0.04 for all indices ( = 0.69). Reclassification due to the hydrostatic pressure gradient when using dichotomous cutoff values occurred in 13.4, 22.3, and 20.6% for FFR, P/P, and dPR, respectively. The effect of hydrostatic pressure gradient correction differed among the coronary arteries and was most pronounced in the left anterior descending. When considering the gray zone for the different functional indices, the hydrostatic pressure gradient resulted in reclassification in only one patient out of the complete patient population (1/602; 0.17%). The hydrostatic pressure gradient can influence functional lesion assessment when using dichotomous cutoff values. When taking the gray zone into account, its effect is limited. This study systematically simulated the effect of hydrostatic pressure gradients (HPG) on real-world hyperemic and nonhyperemic pressure ratios, showing correction for HPG leads to reclassification in functional significance from 13.4 to 22.3% for different functional indices. This was most pronounced in nonhyperemic pressure ratios. A new pressure guidewire (Wirecath) is unaffected by HPG. The ongoing PW-COMPARE study (NCT04802681) prospectively analyzes the magnitude and importance of HPG by simultaneous FFR measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00305.2023DOI Listing

Publication Analysis

Top Keywords

hydrostatic pressure
40
pressure gradient
32
pressure
17
nonhyperemic pressure
16
pressure ratios
16
hyperemic nonhyperemic
12
functional lesion
12
ffr p/p
12
p/p dpr
12
hydrostatic
10

Similar Publications

Structural and physicochemical properties of debranched lotus seed starch treated with high hydrostatic pressure.

Int J Biol Macromol

December 2024

College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China. Electronic address:

Lotus seeds represent a significant economic crop and are abundant in starch. To further enhance their application value, this study investigates the structural characteristics of lotus seed starch (LS) under the combined influence of pullulanase and high hydrostatic pressure (HHP). Pullulanase increased amylose content from 39.

View Article and Find Full Text PDF

High hydrostatic pressure modulates the digestive properties of rice starch-gallic acid composites by boosting non-inclusion complexation.

Int J Biol Macromol

December 2024

Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom. Electronic address:

Article Synopsis
  • Research has focused on using natural plant materials, like gallic acid (GA), to influence post-meal blood sugar levels by forming complexes with amylose in starch, leading to resistant starch.
  • The study compared the properties of normal rice starch and rice starch-GA composites processed through high hydrostatic pressure (HHP) and thermal treatments, noting significant structural changes during digestion.
  • The HHP processing resulted in unique gel structures and a marked increase in resistant starch, indicating that HHP might be an effective method for creating starch-based foods with better digestion profiles.
View Article and Find Full Text PDF

Study on numerical simulation of groundwater flow field and slope stability in multi-aquifer open pit mine.

Sci Rep

December 2024

Liaoning Institute of Technology and Equipment for Mineral Resources Development and Utilisation in Higher Educational Institutions, Liaoning Technical University, Fuxin, 123000, Liaoning, China.

Water is one of the most important influences on slope stability in open pit mines. In order to solve the problem of slope stability analysis in multi-aquifer open pit mines, the open pit mine in Block I of Thar Coalfield in Pakistan with multiple aquifers was taken as the research background. The groundwater flow field at different excavation phases was analyzed by numerical simulation method.

View Article and Find Full Text PDF

In the realm of petroleum extraction, well productivity declines as reservoirs deplete, eventually reaching a point where continued extraction becomes economically unfeasible. To counteract this, artificial lift techniques are employed, with gas injection being a prevalent method. Ideally, unrestricted gas injection could maximize oil output.

View Article and Find Full Text PDF

Biomimetic Linkage Mechanism Robust Control for Variable Stator Vanes in Aero-Engine.

Biomimetics (Basel)

December 2024

The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

This work addresses the position tracking control design of the stator vane driven by electro-hydrostatic actuators facing uncertain aerodynamic disturbances. Rapidly changing aerodynamic conditions impose complex disturbance torques on the guide vanes. Consequently, a challenging task is to enhance control precision in complex uncertain environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!