Brand-Specific Toxicity of Tire Tread Particles Helps Identify the Determinants of Toxicity.

Environ Sci Technol

Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

Published: August 2023

The widespread occurrence of tire tread particles (TPs) has aroused increasing concerns over their impacts. However, how they affect the soil fauna remains poorly understood. Here, based on systematically assessing the toxicity of TPs on soil model speciesat environmentally relevant concentrations through both soil and food exposure routes, we reported that TPs affected gut microbiota, intestinal histopathology, and metabolites of the worms both through particulate- and leachate-induced effects, while TP leachates exerted stronger effects. The dominant role of TP leachates in TP toxicity was further explained by the findings that worms did not ingest TPs with a particle size of over 150 μm and actively avoided consuming TP particles. Moreover, by comparing the effects of different brands of TPs as well as new and aged TPs, we demonstrated that it was mainly TP leachates that resulted in the ubiquity of the disturbance in the worm's gut microbiota among different brands of TPs. Notably, the large variations in leachate compositions among different brands of TPs provided us a unique opportunity to identify the determinants of TP toxicity. These results provide novel insights into the toxicity of TPs to soil fauna and a reference for toxicity reduction of tires.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.3c02885DOI Listing

Publication Analysis

Top Keywords

brands tps
12
tps
9
tire tread
8
tread particles
8
identify determinants
8
determinants toxicity
8
soil fauna
8
toxicity tps
8
tps soil
8
gut microbiota
8

Similar Publications

Long-acting injectable cabotegravir is more effective than daily oral PrEP at preventing HIV transmission due to improved adherence, but requires bi-monthly large-volume intramuscular injections. Subcutaneous (SC) contraceptive implants can be formulated with antiretrovirals for extended-duration HIV PrEP. Islatravir (ISL) is a first-in-class, investigational antiretroviral with pharmacologic properties well-suited for implant delivery.

View Article and Find Full Text PDF

A sensor array based on a nanozyme with polyphenol oxidase activity for the identification of tea polyphenols and Chinese green tea.

Biosens Bioelectron

April 2024

Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China.

Green tea is popular among consumers because of its high nutritional value and unique flavor. There is often a strong correlation among the type of tea, its quality level and the price. Therefore, the rapid identification of tea types and the judgment of tea quality grades are particularly important.

View Article and Find Full Text PDF

A colorimetric sensor array based on peroxidase activity nanozyme for the highly efficient differential sensing of tea polyphenols and Tieguanyin adulteration.

Food Chem

January 2024

Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, PR China. Electronic address:

Tieguanyin (TGY) is one of top ten famous teas in China, but in the process of brand building there is the phenomenon of falsehood, thus harming the interests of consumers. To solve theadulterate problem of TGY, a colorimetric sensor array (CSA) based onperoxidase activity of nanozyme was constructed. Nanozymes can catalyze 3,3',5,5'-tetramethylbenzidine (TMB) to 3,3',5,5'-tetramethyl -[1,1'-bis(cyclohexyl)]-2,2',5,5'-tetraene-4,4'-diimine (oxTMB), while the tea polyphenols (TPs) can inhibit this process, and the degree of inhibition varies significantly with the reaction time.

View Article and Find Full Text PDF

Brand-Specific Toxicity of Tire Tread Particles Helps Identify the Determinants of Toxicity.

Environ Sci Technol

August 2023

Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

The widespread occurrence of tire tread particles (TPs) has aroused increasing concerns over their impacts. However, how they affect the soil fauna remains poorly understood. Here, based on systematically assessing the toxicity of TPs on soil model speciesat environmentally relevant concentrations through both soil and food exposure routes, we reported that TPs affected gut microbiota, intestinal histopathology, and metabolites of the worms both through particulate- and leachate-induced effects, while TP leachates exerted stronger effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!