The synergistic effect of bimetallic co-incorporated metal oxides have gained enormous attention due to their unique optoelectronic properties. Herein, we present the green synthesis of ZnO, Cu-incorporated ZnO, Mn-incorporated ZnO, and Cu-Mn co-incorporated nanoparticles (ZnO NPs, CuZnO NPs, MnZnO NPs, MnCuZnO NPs) for antimicrobial and photocatalytic reduction applications using corn silk extract and industrial metal wastes. The as-synthesized NPs were characterized by using UV-visible absorption spectroscopy (UV-Vis), photoluminescence (PL) spectroscopy, Fourier-transformed infrared spectroscopy (FT-IR), powdered x-ray diffraction (XRD), and scanning electron microscopy (SEM). CuZnO, MnZnO, and MnCuZnO NPs efficiently inhibited bacterial culture growth. The photocatalytic reduction activity of as-synthesized NPs against the different concentrations of 4-nitrophenol (4-NP) in water was also investigated. CuZnO and MnCuZnO nanoparticles were to be efficient photocatalysts for reducing 4-NP into 4-aminophenol (4-AP). RESEARCH HIGHLIGHTS: Green synthesis of nanomaterials by agricultural and industrial wastes Cu and Mn co-incorporated ZnO NPs have shown good photocatalysis and antimicrobial activities Green approach for waste conversion to value-added products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jemt.24386 | DOI Listing |
Nat Commun
January 2025
Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
The fabrications of circularly polarized luminescent (CPL) material are mainly based on the chemical and physical strategies. Controlled biosynthesis of CPL-active materials is beset with difficulties due to the lack of bioactive luminescent precursors and bio-reactors. Enlighted by microbe-assisted asymmetric biosynthesis, herein, we show the in situ bacterial fermentation of Komagataeibacter sucrofermentants to fabricate a series of bacterial cellulosic biofilms with CPL of green, orange, red, and near-infrared colors.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
A green facile method was developed to synthesize the carbon quantum dots from barberry, a native plant, as a new carbon source. The synthesis strategy is a simple one-step hydrothermal process without requiring hazardous chemical reagents. The spherical structure of b-CDs with an average particle size of 3.
View Article and Find Full Text PDFJ Clin Neurosci
January 2025
Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, NY, USA.
Objectives: Ensuring aneurysm exclusion while maintaining vessel patency is crucial during intracranial aneurysm clipping. Although digital subtraction angiography (DSA) is the gold standard for intraoperative vascular imaging, some centers have reported using fluorescein sodium video angiography (FNa-VA). However, a synthesis of these findings is still lacking.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater.
View Article and Find Full Text PDFNanomedicine (Lond)
January 2025
Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
Background: Gene therapy is garnering increasing support due to its potential for a "once-delivered, lifelong benefit." The limitations of traditional gene delivery methods have spurred the advancement of bionanomaterials. Despite this progress, a thorough analysis of the evolution, current state, key contributors, focal studies, and future directions of nanomaterials in gene delivery remains absent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!