To investigate the effects of quinoa on glucose and lipid metabolism, and the prognosis in people with impaired glucose tolerance. One hundred and thirty-eight patients diagnosed with impaired glucose tolerance following a glucose tolerance test in Guangzhou Cadre Health Management Center were selected and randomly divided into quinoa intervention and control groups, according to the digital table method. After 1 year of follow-up, the differences in blood glucose, blood lipid, glycosylated hemoglobin and other indicators were compared. The disease prognosis between the two groups was also compared. The 2 h postprandial blood glucose, glycosylated hemoglobin, insulin resistance index, total cholesterol, low-density lipoprotein cholesterol, body mass index, waist circumference, systolic and diastolic blood pressure after intervention in the quinoa group were significantly lower than before intervention. In contrast, high-density lipoprotein cholesterol was higher than before intervention and is statistically significant ( < 0.05). After 1 year of follow-up, the control group's glycosylated hemoglobin and body mass index are higher than before intervention, and are statistically significant ( < 0.05). The 2 h postprandial blood glucose, glycosylated hemoglobin, insulin resistance index, body mass index, and mean diastolic blood pressure in the quinoa group are statistically significantly lower than in the control group, while high-density lipoprotein cholesterol is higher ( < 0.05). The rate of conversion to diabetes for participants in the quinoa group (7.8%) is statistically significantly lower than in the control group (20.3%) (χ2 = 12.760, = 0.002). Logistic regression analysis showed that quinoa consumption is a protective factor against delaying the progression of diabetes ( < 0.05). Adding quinoa to staple food intake can reduce postprandial blood glucose, and improve lipid metabolism and insulin resistance, delaying the progression of diabetes in people with impaired glucose tolerance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354450PMC
http://dx.doi.org/10.3389/fphys.2023.1179587DOI Listing

Publication Analysis

Top Keywords

glucose tolerance
20
impaired glucose
16
blood glucose
16
glycosylated hemoglobin
16
postprandial blood
12
insulin resistance
12
lipoprotein cholesterol
12
body mass
12
quinoa group
12
glucose
10

Similar Publications

GPR119 has emerged as a promising target for treating type 2 diabetes and associated obesity, as its stimulation induces the secretion of glucagon-like peptide-1 and glucose-dependent insulinotropic peptide in the intestinal tract as well as the glucose-dependent release of insulin in pancreatic β-cells. We describe the design and synthesis of novel GPR119 agonists containing a 1,4-disubstituted cyclohexene scaffold. Compound displayed nanomolar potency (EC = 3.

View Article and Find Full Text PDF

The stress-protectant molecule trehalose mediates fluconazole tolerance in .

Antimicrob Agents Chemother

January 2025

Department of Biology, Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.

The incidence of non- infections has witnessed a substantial rise in recent decades. ), an opportunistic human fungal pathogen, is accountable for both superficial mucosal and life-threatening bloodstream infections, particularly in immunocompromised individuals. Distinguished by its remarkable resilience to environmental stressors, exhibits intrinsic tolerance to azoles and a high propensity to swiftly develop azole resistance during treatment.

View Article and Find Full Text PDF

Drought stress has become one of the biggest concerns in threating the growth and yield of carrots ( L.). Recent studies have shed light on the physiological and molecular metabolisms in response to drought in the carrot plant; however, tissue-specific responses and regulations are still not fully understood.

View Article and Find Full Text PDF

Xylooligosaccharide and Akkermansia muciniphila synergistically ameliorate insulin resistance by reshaping gut microbiota, improving intestinal barrier and regulating NKG2D/NKG2DL signaling in gestational diabetes mellitus mice.

Food Res Int

February 2025

Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China. Electronic address:

Xylooligosaccharides (XOS) ameliorate insulin resistance (IR) in gestational diabetes mellitus (GDM) probably by propagating Akkermansia muciniphila (Akk). This study aimed to investigate the effects and mechanisms of XOS, Akk and combination on IR in GDM mice/pseudo-germ-free (PGF) mice. Female mice were fed with AIN-93 (n = 19) and high fat diet (HFD) (n = 206).

View Article and Find Full Text PDF

Background: There is increasing need for effective incorporation of high-dimensional genetics data from individuals with varied ancestry in genome-wide association (GWAS) analyses. Classically, multi-ancestry GWAS analyses are performed using statistical meta-analysis to combine results conducted within homogeneous ancestry groups. The emergence of cosmopolitan reference panels makes collective preprocessing of GWAS data possible, but impact on downstream GWAS results in a mega-analysis framework merits investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!