A novel and biologically active nanobiocomposite is synthesized based on carbon nitride nanosheet (g-CN) based carboxymethylcellulose hydrogels with embedded zinc ferrite nanoparticles. Physical-chemical aspects, morphological properties, and their multifunctional biological properties have been considered in the process of evaluation of the synthesized structure. The hydrogels' compressive strength and compressive modulus are 1.98 ± 0.03 MPa and 3.46 ± 0.05 MPa, respectively. Regarding the biological response, it is shown that the nanobiocomposite is non-toxic and biocompatible, and hemocompatible (with Hu02 cells). In addition, the developed material offers a suitable antibacterial activity for both () and ().
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354627 | PMC |
http://dx.doi.org/10.1039/d3ra02822d | DOI Listing |
Sci Rep
December 2024
Department of Mining Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran.
To tackle the challenges of increasing the efficiency of photocatalysts, a ternary magnetic heterojunction photocatalyst containing spinel cobalt and zinc ferrites, and zeolite (CZZ) was designed and fabricated. The physicochemical properties of the novel photocatalyst were verified using characterization techniques such as XRD, FT-IR, FE-SEM, EDS mapping, N adsorption-desorption, VSM, PL, and UV-Vis DRS. The CZZ photocatalyst exhibited a significant Cr (VI) reduction rate of 0.
View Article and Find Full Text PDFJ Mater Chem A Mater
December 2024
Department of Materials Engineering, Ben-Gurion University of the Negev Beer Sheva 8410500 Israel
Zinc ferrite (ZnFeO, ZFO) has gained attention as a candidate material for photoelectrochemical water oxidation. However, champion devices have achieved photocurrents far below that predicted by its bandgap energy. Herein, strong optical interference is employed in compact ultrathin film (8-14 nm) Ti-doped ZFO films deposited on specular back reflectors to boost photoanode performance through enhanced light trapping, resulting in a roughly fourfold improvement in absorption as compared to films deposited on transparent substrates.
View Article and Find Full Text PDFDalton Trans
December 2024
Department of Biotechnology, Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow PL35-310, Poland.
In this work, we are showing the results of the X- and Q-band electron magnetic resonance measurements of ultra-small ZnMnFeO nanoparticles ( 8 nm) with a very narrow size distribution. The chosen synthetic route allows for precise structural modifications with a broad concentration range ( = 0, 0.2, 0.
View Article and Find Full Text PDFCurr Top Med Chem
December 2024
Center for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India.
Introduction/objective: Tuberculosis (TB) remains a persistent global health challenge, with an increasing incidence of cases and limitations in current treatment strategies. Traditional therapy involves long drug treatments that can cause side effects and lead to drug-resistant strains, making treatment less effective. This study aimed to explore the therapeutic potential of a novel nanoparticle-based delivery system for Thymol (THY), a natural antibacterial bioactive molecule, to combat Mycobacterium smegmatis, a model organism for Mycobacterium tuberculosis.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
The need to optimize size, weight, and power of high-power microwave (HPM) systems has motivated the development of solid-state HPM sources, such as nonlinear transmission lines (NLTLs), which utilize gyromagnetic precession or dispersion to generate RF. One recent development implemented the NLTL as a pulse forming line (PFL) to form a nonlinear pulse forming line (NPFL) system that substantially reduced the system's size by eliminating the need for a separate PFL; however, matching standard loads can be challenging. This paper describes the development of a tapered NPFL using an exponentially tapered composite based ferrite core containing 60% nickel zinc ferrite (by volume) encased in polydimethylsiloxane (PDMS) and encapsulated in a 5% barium strontium titanate shell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!