Antimicrobial photodynamic therapy or aPDT is an alternative therapeutic approach in which lasers and different photosensitizing agents are used to eradicate periodontopathic bacteria in periodontitis. Periodontitis is a localized infectious disease caused by periodontopathic bacteria and can destroy bones and tissues surrounding and supporting the teeth. The aPDT system has been shown by studies to have high bactericidal efficacy. It was demonstrated that aPDT has low local toxicity, can speed up dental therapy, and is cost-effective. Several photosensitizers (PSs) are available for each type of light source which did not induce any damage to the patient and are safe. In recent years, significant advances have been made in aPDT as a non-invasive treatment method, especially in treating infections and cancers. Besides, aPDT can be perfectly combined with other treatments. Hence, this survey focused on the effectiveness and mechanism of aPDT of periodontitis by using lasers and the most frequently used antimicrobial PSs such as methylene blue (MB), toluidine blue ortho (TBO), indocyanine green (ICG), malachite green (MG) (Triarylmethanes), erythrosine dyes (ERY) (Xanthenes dyes), rose bengal (RB) (Xanthenes dyes), eosin-Y (Xanthenes dyes), radachlorin group and curcumin. The aPDT with these PSs can reduce pathogenic bacterial loads in periodontitis. Therefore, it is clear that there is a bright future for using aPDT to fight microorganisms causing periodontitis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1389201024666230720104516 | DOI Listing |
Anal Chim Acta
February 2025
Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518045, PR China.
Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA.
Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.
Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.
Int J Mol Sci
January 2025
Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy.
This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Gynecologic Oncology and Reproductive Medicine, Unit 1362, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
Background: The ability to predict the prognosis of patients with ovarian cancer can greatly improve disease management. However, the knowledge on the mechanism of the prediction is limited. We sought to deconvolute the attention feature learnt by a deep learning convolutional neural networks trained with whole-slide images (WSIs) of hematoxylin-and-eosin (H&E)-stained tumor samples using spatial transcriptomic data.
View Article and Find Full Text PDFPLoS One
January 2025
Virology Group, Vice-chancellor of Research, Universidad El Bosque, Bogotá, Colombia.
Extracellular vesicles (EVs) are membrane-bound structures produced and released into the extracellular space by all types of cells. Due to their characteristics, EVs play crucial roles in cellular communication and signaling, holding an immense potential as biomarkers and molecular transporters. Various methods have been developed to label and characterize EVs, however, visualizing EVs remains a process that requires highly specialized and expensive equipment, which is not always available in all the laboratories.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!