Objectives: Hereditary spastic paraplegia (HSP) is a genetically heterogeneous disease caused by over 70 genes, with a significant number of patients still genetically unsolved. In this study, we recruited a suspected HSP family characterized by spasticity, developmental delay, ataxia and hypomyelination, and intended to reveal its molecular etiology by whole exome sequencing (WES) and long-read sequencing (LRS) analyses.

Methods: WES was performed on 13 individuals of the family to identify the causative mutations, including analyses of SNVs (single-nucleotide variants) and CNVs (copy number variants). Accurate circular consensus (CCS) long-read sequencing (LRS) was used to verify the findings of CNV analysis from WES.

Results: SNVs analysis identified a missense variant c.195G>T (p.E65D) of MORF4L2 at Xq22.2 co-segregating in this family from WES data. Further CNVs analysis revealed a microdeletion, which was adjacent to the MORF4L2 gene, also co-segregating in this family. LRS verified this microdeletion and confirmed the deletion range (chrX: 103,690,507-103,715,018, hg38) with high resolution at nucleotide level accuracy.

Interpretations: In this study, we identified an Xq22.2 microdeletion (about 24.5 kb), which contains distal enhancers of the PLP1 gene, as a likely cause of SPG2 in this family. The lack of distal enhancers may result in transcriptional repression of PLP1 in oligodendrocytes, potentially affecting its role in the maintenance of myelin, and causing SPG2 phenotype. This study has highlighted the importance of noncoding genomic alterations in the genetic etiology of SPG2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502680PMC
http://dx.doi.org/10.1002/acn3.51848DOI Listing

Publication Analysis

Top Keywords

hereditary spastic
8
spastic paraplegia
8
long-read sequencing
8
sequencing lrs
8
co-segregating family
8
distal enhancers
8
family
5
microdeletion
4
microdeletion distal
4
distal plp1
4

Similar Publications

Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.

View Article and Find Full Text PDF

Background: We researched the occurrence, neuropathology, and clinical features of spastic paraplegia (SP) associated to dementia in presenilin 1 (PSEN1) Italian patients related to familial Alzheimer's disease (AD).

Methods: We carried out whole exome sequencing in 33 familial AD probands with hereditary spastic paraplegia (HSP) that resulted negative for the identification of pathogenetic variants in known HSP genes. One patient was identified with a DNA variant in PSEN1, and bioinformatic analysis was conducted to characterize its pathogenetic nature.

View Article and Find Full Text PDF

Expanding molecular and clinical spectrum of CPT1C-associated hereditary spastic paraplegia (SPG73)-a case series.

Ann Clin Transl Neurol

December 2024

Department of Neurology, Movement Disorders Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Autosomal-dominant variants in the CPT1C gene have been associated with hereditary spastic paraplegia type 73 (SPG73), which typically presents with slowly progressive lower limb weakness and spasticity and is therefore considered a pure form of hereditary spastic paraplegia. However, we report two unrelated males with novel CPT1C variants (NM_001199753.2: patient 1: c.

View Article and Find Full Text PDF

Quantitative natural history modeling of HPDL-related disease based on cross-sectional data reveals genotype-phenotype correlations.

Genet Med

December 2024

Movement Disorders Program, Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA. Electronic address:

Objectives: Biallelic HPDL variants have been identified as the cause of a progressive childhood-onset movement disorder, with a broad clinical spectrum from severe neurodevelopmental disorder to juvenile-onset pure hereditary spastic paraplegia type 83. This study aims at delineating the geno- and phenotypic spectra of patients with HPDL-related disease, quantitatively modelling the natural history, and uncovering genotype-phenotype associations.

Methods: A cross-sectional analysis of 90 published and one novel case was performed, employing a Human Phenotype Ontology-based approach.

View Article and Find Full Text PDF

A fifth world case of autosomal recessive Siddiqi syndrome (SIDDIS) related to ene is presented. In a consanguineous Lezgin (a Dagestan ethnicity) family, there were two affected brothers aged 28 yrs (proband, personally examined) and 32 yrs. Whole-exome sequencing followed by familial Sanger sequencing detected a novel missence variant c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!