Deterioration of the signal-to-noise ratio (SNR) is an important challenge in ultra-long multi optical line system (OLS) optical transmission systems. The non-uniform gain and cascading of the Erbium-doped fiber amplifier (EDFA) lead to SNR deterioration in transmission systems. In this paper, we propose two channel power equalization methods based on joint optimization of EDFA and Reconfigurable optical add-drop multiplexer (ROADM) configurations: 1) reinforcement learning (RL)-based channel power equalization (RL-PE) and 2) covariance matrix adaptive evolution strategy (CMA-ES) channel power equalization (CMA-PE). The simulation results indicate that the power equalization effect was improved by 1.9 dB through the CMA-PE method, while the RL-PE method led to a 1.5 dB improvement in an ultra-long 80-channel 7-OLS transmission system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.493185 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!