Spatial light modulators enabling complex light field manipulation has opened up many opportunities in biomedical imaging, holographic display, and adaptive optics. However, traditional spatial light modulators do not allow multi-color operations simultaneously due to their physical constraints, while multi-color modulations are highly desirable in many applications. To overcome this limitation, we demonstrate a multi-color spatial complex light field modulation with a single binary hologram on digital micromirror devices (DMD). This method combines several neighboring micro-mirror pixels into a giant single superpixel, in which the light field's amplitude and phase can be individually determined by internal pixel combinations, and the dynamic range of phase modulation can exceed 2π for the single wavelength. As a result, this extra phase modulation range offers an additional degree of freedom for independent multi-wavelength light modulation. Based on this scheme, multi-color light modulations have been demonstrated in a 2D plane as well as in multiple 3D holographic planes. Moreover, a dual-colored Airy beam has been realized using the same technique. These results bring complex light modulation into a multi-color regime, paving the way for practical applications in information display, imaging, and optical trapping.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.494238DOI Listing

Publication Analysis

Top Keywords

spatial light
12
light modulation
12
complex light
12
light
9
modulation single
8
digital micromirror
8
light modulators
8
light field
8
phase modulation
8
multi-color
6

Similar Publications

Sleep and circadian rhythms are regulated by dynamic physiologic processes that operate across multiple spatial and temporal scales. These include, but are not limited to, genetic oscillators, clearance of waste products from the brain, dynamic interplay among brain regions, and propagation of local dynamics across the cortex. The combination of these processes, modulated by environmental cues, such as light-dark cycles and work schedules, represents a complex multiscale system that regulates sleep-wake cycles and brain dynamics.

View Article and Find Full Text PDF

Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions.

View Article and Find Full Text PDF

Spatial-Temporal Dynamics of Adventitious Roots of Pers. Seedlings Grown with Auxin/Cytokinin.

Life (Basel)

January 2025

Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del IPN, Avenida Instituto Politécnico Nacional 2508, Colonia San Pedro Zacatenco, Ciudad de México C.P. 07360, Mexico.

The spatial-temporal dynamics of an in vitro radicular system of for the development of rhizofiltration technologies, with the potential for use as a phytotreatment of eutrophicated water, were studied for the first time in the roots of seedlings and in rhizotron systems. The effect of indole-3-acetic acid (AIA) in combination with kinetin (CIN) or 6-benzylaminopurine (BAP) on seedlings cultivated in the light and dark in three radicular systems and in a rhizotrophic regime for the screening of dynamic rhizogenic lines, by weekly allometric measurements of the length and number of roots, were studied. Inhibition of the elongation and branching velocities of roots by BAP and light was observed but CIN increased elongation and branching.

View Article and Find Full Text PDF

Superconductor-Insulator Transition Induced by Precise Subtripled Vapor Chemical Gating.

J Am Chem Soc

January 2025

State Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

Recent progress in superconductor-insulator transition has shed light on the intermediate metallic state with unique electronic inhomogeneity. The microscopic model, suggesting that carrier spatial distribution plays a decisive role in the intermediate state, has been instrumental in understanding the quantum transition. However, the narrow carrier density window in which the intermediate state exists necessitates precise control of the gate dielectric layer, presenting a challenge to in situ map the carrier spatial distribution.

View Article and Find Full Text PDF

A methodology is proposed, which addresses the caveat that line-of-sight emission spectroscopy presents in that it cannot provide spatially resolved temperature measurements in non-homogeneous temperature fields. The aim of this research is to explore the use of data-driven models in measuring temperature distributions in a spatially resolved manner using emission spectroscopy data. Two categories of data-driven methods are analyzed: (i) Feature engineering and classical machine learning algorithms, and (ii) end-to-end convolutional neural networks (CNN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!