Vibrations of the reticle and wafer stage are inevitable due to the high speed and acceleration required during the exposure movement of the lithography system. Previous studies have shown that these vibrations have an impact on both overlay and imaging quality. Furthermore, as the integrated circuit industry continues to develop and extreme ultraviolet (EUV) lithography is increasingly utilized, the size of the exposure image continues to decrease, making the stability of the reticle and wafer stage motion increasingly important. This paper establishes a model of the reticle and wafer stage motion under the influence of vibration based on the advanced process node of EUV lithography. We investigate the relationship between variations in vibration amplitude and frequency and their effects on imaging contrast and line edge roughness (LER). Additionally, we simulate the quantitative relationship between the vibration of the reticle and wafer stage and the imaging quality of through-pitch line/space structures, tip-to-tip (T2T) structures, and tip-to-line (T2L) structures under extreme exposure conditions of EUV lithography using a computer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.493210 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!