This work theoretically investigates the relative intensity noise (RIN) and spectral linewidth characteristics of epitaxial quantum dot (QD) lasers on silicon subject to optical injection. The results show that the RIN of QD lasers can be reduced by optical injection, hence a reduction of 10 dB is achieved which leads to a RIN as low as -167.5 dB/Hz in the stable injection-locked area. Furthermore, the spectral linewidth of the QD laser can be greatly improved through the optical injection locked scheme. It is reduced from 556.5 kHz to 9 kHz with injection ratio of -60 dB and can be further reduced down to 1.5 Hz with injection ratio of 0 dB. This work provides an effective method for designing low intensity noise and ultra-narrow linewidth QD laser sources for photonics integrated circuits on silicon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.492580 | DOI Listing |
Sci Rep
January 2025
Department of Ophthalmology, West China Hospital of Sichuan University, No.37, Guoxue Xiang, Chengdu, 610041, Sichuan, China.
The purpose of this study is to evaluate the effectiveness of intensity-modulated radiation therapy (IMRT) combined with periorbital triamcinolone acetonide injection in treating thyroid eye disease (TED) patients with active extraocular muscle but low CAS. The retrospective observational study was conducted. A total of 156 eligible patients were selected from the TED patient database of the Ophthalmology Department of West China Hospital of Sichuan University.
View Article and Find Full Text PDFEye (Lond)
January 2025
Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Purpose: To utilize optical coherence tomography (OCT) and SS-OCT angiography (SS-OCTA) for quantifying morphological changes seen in eyes with recalcitrant neovascular age-related macular degeneration (nAMD) transitioned to intravitreal faricimab injections during the manufacturer's recommended induction phase of treatment.
Methods: Fifty-four treatment-recalcitrant patients (60 eyes) were recruited. OCT and SS-OCTA images were obtained at 0 and 3 months.
Eye (Lond)
January 2025
Maidstone Hospital Eye Department, Hermitage Lane, Maidstone, UK.
Background And Objectives: Faricimab, a bispecific antibody targeting VEGF-A and angiopoietin-2, has shown promise in treating neovascular age-related macular degeneration (nAMD). This study evaluates 1-year outcomes of faricimab in treatment-experienced nAMD patients.
Methods: This single-centre retrospective cohort study included patients previously treated for nAMD who switched to faricimab between November 2022 and March 2024.
Eur J Pharmacol
January 2025
Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital. Electronic address:
Retinal vein occlusion (RVO) has become the second most common retinal vascular disease after diabetic retinopathy. Existing therapeutic approaches, including intravitreal injection of antivascular endothelial growth factors (anti-VEGFs) and/or glucocorticoids and laser therapy, primarily address secondary macular edema and neovascularisation. However, these strategies do not address the underlying cause of the disease and may have harmful side effects.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
The Rift Valley fever virus (RVFV) causes haemorrhagic fever, encephalitis, and permanent blindness and has been listed by the WHO as a priority pathogen. To study RVFV pathogenesis and identify small-molecule antivirals, we established a novel In Vivo model using zebrafish larvae. Pericardial injection of RVFV resulted in ~4 log viral RNA copies/larva, which was inhibited by the antiviral 2'-fluoro-2'-deoxycytidine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!