The physics associated with multipartite high-dimensional entanglement is different from that of multipartite two-dimensional entanglement. Therefore, preparing multipartite high-dimensional entanglements with linear optics is challenging. This study proposes a preparation protocol of multiphoton GHZ state with arbitrary dimensions for optical systems. Auxiliary entanglements realize a high-dimensional entanglement gate to connect the high-dimensional entangled pairs to a multipartite high-dimensional GHZ state. Specifically, we use the path degrees of freedom of photons to prepare a four-partite, three-dimensional GHZ state. Our method can be extended to other degrees of freedom to generate arbitrary GHZ entanglements in any dimension.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.494850 | DOI Listing |
Phys Rev Lett
December 2024
Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea and Division of Quantum Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea.
High-dimensional multipartite entanglement plays a crucial role in quantum information science. However, existing schemes for generating such entanglement become complex and costly as the dimension of quantum units increases. In this Letter, we overcome the limitation by proposing a significantly enhanced linear optical heralded scheme that generates the d-level N-partite Greenberger-Horne-Zeilinger (GHZ) state with single-photon sources and linear operations.
View Article and Find Full Text PDFEntropy (Basel)
January 2024
School of Mathematical Sciences, Capital Normal University, Beijing 100048, China.
The monogamy property of entanglement is an intriguing feature of multipartite quantum entanglement. Most entanglement measures satisfying the monogamy inequality have turned out to be convex. Whether nonconvex entanglement measures obey the monogamy inequalities remains less known at present.
View Article and Find Full Text PDFIn this paper, we present a novel form of a partially coherent beam characterized by classical entanglement in higher dimensions. We coin the term "twisted vector vortex (TVV) beam" to describe this phenomenon. Similar to multi-partite quantum entangled states in higher dimensions, the partially coherent twisted vector vortex beam possesses distinct properties such as non-uniform polarization, vortex phase, and twist phase.
View Article and Find Full Text PDFThe physics associated with multipartite high-dimensional entanglement is different from that of multipartite two-dimensional entanglement. Therefore, preparing multipartite high-dimensional entanglements with linear optics is challenging. This study proposes a preparation protocol of multiphoton GHZ state with arbitrary dimensions for optical systems.
View Article and Find Full Text PDFPhys Rev Lett
June 2023
Departamento de Física Aplicada II, Universidad de Sevilla, E-41012 Sevilla, Spain.
Contextuality is a distinctive feature of quantum theory and a fundamental resource for quantum computation. However, existing examples of contextuality in high-dimensional systems lack the necessary robustness required in experiments. Here, we address this problem by identifying a family of noncontextuality inequalities whose maximum quantum violation grows with the dimension of the system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!